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Infinite dimensional sequential compact-
ness: Sequential compactness based on
barriers∗
C. Corral, O. Guzmán, C. López-Callejas, P. Memarpanahi, P. Szeptycki
and S. Todorčević

Abstract. We introduce a generalization of sequential compactness using barriers on 𝜔 extending
naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem,
Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and C.
López-Callejas, High dimensional sequential compactness, Fund.Math.] by building spaces that are B-
sequentially compact but not C-sequentially compact when the barriers B and C satisfy certain rank
assumption which turns out to be equivalent to a Katětov-order assumption. Such examples are con-
structed under the assumption 𝔟 = 𝔠. We also exhibit some classes of spaces that are B-sequentially
compact for every barrier B, including some classical classes of compact spaces from functional anal-
ysis, and as a byproduct we obtain some results on angelic spaces. Finally we introduce and compute
some cardinal invariants naturally associated to barriers.

1 Introduction

A 2-dimensional version of sequential compactness was first considered by M.
Bojańczyk, E. Kopczyński and S. Toruńczyk in [3] where they showed that if 𝑓 : [𝜔]2 →
𝐾 and 𝐾 is a compact metric space, then there is an infinite set 𝐵 ∈ [𝜔]𝜔 and 𝑥 ∈ 𝐾
such that for every open𝑈 ∋ 𝑥, there exists 𝑚 ∈ 𝜔 such that 𝑓 ′′ [𝐵 \ 𝑚]2 ⊆ 𝑈. In this
case, 𝑥 is said to be the limit of 𝑓 ↾ [𝐵]2. Using this result, they show that every com-
pact metric semigroup has an idempotent that can be defined as the limit of naturally
defined 𝑓 : [𝜔]2 → 𝐾 . It is natural to call this property 2-dimensional sequential com-
pactness and look for higher-dimensional versions. In fact, the notion of 𝑛-sequential
compactness was introduced and studied in [19] (called 𝑛-Ramsey in their paper) as a
natural generalization from the case 𝑛 = 2 to all other positive integers 𝑛. A space 𝑋 is
said to be 𝑛-sequentially compact if for every function 𝑓 : [𝜔]𝑛 → 𝑋 there is an infinite
set 𝑀 ∈ [𝜔]𝜔 and 𝑥 ∈ 𝑋 such that for every open𝑈 ∋ 𝑥 there exists 𝑘 ∈ 𝜔 such that
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2 Corral et al.

𝑓 ′′ [𝑀 \ 𝑘]𝑛 ⊆ 𝑈. It was shown in [19] that every 𝑛-sequentially compact space is also
𝑚-sequentially compact as long as𝑚 ≤ 𝑛, and since 1-sequential compactness coincides
with classical notion of sequential compactness, every 𝑛-sequentially compact space is
also sequentially compact.On the other hand, they gave examples of 𝑛-sequentially com-
pact spaces that are not (𝑛 + 1)-sequentially compact (assuming CH for 𝑛 > 1) and
proved that sequentially compact spaces of character less that 𝔟 are 𝑛-sequentially com-
pact for all 𝑛 ∈ 𝜔 among other results. Many of these results were further improved in
[7], where the study of 𝑛-sequentially compact spaces was carried on.

It should be mentioned that a related notion of Ramsey convergence was introduced
and studied by H. Knaust in [15]. Given an array {𝑥𝑖, 𝑗 : 0 ≤ 𝑖 < 𝑗 < 𝜔} in a space
𝑋 , it is said that it converges Ramsey-uniformly to a point 𝑥 in 𝑋 if there is an infinite
set 𝑀 ∈ [𝜔]𝜔 such that for every open neighborhood𝑈 of 𝑥, there is 𝑘 ∈ 𝜔 such that
𝑥𝑖, 𝑗 ∈ 𝑈 for every 𝑖, 𝑗 ∈ 𝑀 with 𝑘 ≤ 𝑖 < 𝑗 . Knaust also defines a space 𝑋 to have the
Ramsey property if given an array {𝑥𝑛,𝑚 : 𝑛 < 𝑚 < 𝜔} and a point 𝑥 in the space 𝑋
such that lim𝑛→∞ lim𝑚→∞ 𝑥𝑛,𝑚 = 𝑥, the array {𝑥𝑛,𝑚 : 𝑛 < 𝑚 < 𝜔} converges Ramsey
uniformly to 𝑥. He then showed that every Rosenthal compact has the Ramsey property.
In the subsequent paper [16], Knaust showed that some classes of angelic spaces have the
Ramsey property, including function spaces𝐶𝑝 (𝑋) over quasi-Suslin spaces 𝑋 .

The purpose of this paper is to extend the notion of sequential compactness to infi-
nite dimensions. This is done using barriers of Nash-Williams [22], where the notion
of “dimension” is captured by the rank of the barrier which can be any countable
ordinal. Since the simplest examples of barriers are the families [𝜔]𝑛, the notion of
“Barrier-sequential compactness” is a natural one.

We start in Section 2 by studying the general theory of barriers and stating many
results that are the main tools used in our proofs in later sections.

In Section 3 we study the classes of 𝛼-sequentially compact spaces and prove some
basic results. For this definition to make sense, we will show that this property depends
mostly on the rank of a given barrier and not on the particular recursive structure of it.

In Section 4 we show that sequentially compact spaces of small character and com-
pact bisequential spaces are 𝛼-sequentially compact for every 𝛼 < 𝜔1. As a Corollary,
we obtain that many classical classes of compact spaces are 𝛼-sequentially compact for
every 𝛼. We close the section with some comments on angelic spaces and we point out
that a space constructed in [19] and improved in [7] is an angelic space that fails to satisfy
the Ramsey property, answering a question of Knaust [15].

In Section 5 we present the constructions of spaces that are 𝛽-sequentially compact
but not 𝛼-sequentially compact for 𝛽 < 𝛼, under the assumption of 𝔟 = 𝔠. We also
analyze further the properties mentioned in Section 3 and their relation to 𝛼-sequential
compactness.

Finally, in section 6 we define and discuss a number of cardinal invariants associated
to these classes of spaces, and give some topological applications.

Our terminology and notation is mostly standard. In particularN(𝑥) stands for the
collection of open neighborhoods of 𝑥 and for a finite set {𝑏0, . . . , 𝑏𝑛} ∈ [𝜔]<𝜔 , we
will always assume that it is written in increasing order.

Wewill be using a number of classical cardinal invariants of the continuum including
𝔭𝔞𝔯, 𝔭 𝔟, 𝔰, 𝔡, 𝔯, 𝔯𝜎 . We refer the reader to [2] for the background on these cardinals.
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Infinite dimensional sequential compactness 3

Given an almost disjoint familyA on a countable set 𝑁 , we define its Franklin space
as then the one point compactification ofΨ(A), i.e.,F (A) = Ψ(A)∪{∞}. Our coun-
terexamples are almost exclusively Franklin spaces. Formore on almost disjoint families
and Ψ-spaces see [14].

Any other set-theoretic notion and terminology is standard and can be found in [20]
and we refer the reader to [12] for topological terminology.

2 Barriers and fronts

We now introduce the basic concepts of barriers and fronts on [𝜔]<𝜔 . This section
is mainly based on [1] and [26], although some results are new or adapted and will be
applied in subsequent sections where we will extend the theory of 𝑛-sequentially com-
pact spaces by defining the notion of barrier sequential compactness and ultimately
𝛼-sequential compactness for all 𝛼 < 𝜔1.

For F ⊆ [𝜔]<𝜔 and 𝑀 ∈ [𝜔]𝜔 let

F |𝑀 = {𝑠 ∈ F : 𝑠 ⊆ 𝑀}.

Recall that 𝑠 ⊑ 𝑡 means that 𝑡 is an end extension of 𝑠 and 𝑠 ⊏ 𝑡 means 𝑠 ⊑ 𝑡 and 𝑠 ≠ 𝑡.

Definition 2.1 A family F ⊆ [𝜔]<𝜔 is:

• Ramsey: if for every partition F = F0 ⊔ · · · ⊔ F𝑛 and for every 𝑁 ∈ [𝜔]𝜔 , there is
𝑀 ∈ [𝑁]𝜔 such that all but at most one of the restrictions F𝑖 |𝑀 are empty.

• Nash-Williams: if 𝑠 ⊑ 𝑡 implies 𝑠 = 𝑡 for 𝑠, 𝑡 ∈ F .
• Sperner: if 𝑠 ⊆ 𝑡 implies 𝑠 = 𝑡 for 𝑠, 𝑡 ∈ F .

Given a Ramsey family F , applying the Ramsey property to the partition F = F0 ∪
(F \ F0) where F0 is the set of ⊆-minimal elements in F we get the following:

Proposition 2.2 If F is Ramsey, there exists𝑀 ∈ [𝜔]𝜔 such that F |𝑀 is Sperner. ■

Theorem 2.3 [22] Every Nash-Williams family is Ramsey. ■

The previous two results show that (at least if one is willing to pass to an infinite
subset) the three concepts of being Ramsey, Nash-Williams and Sperner are equivalent:

Ramsey ⇒ (some restriction is) Sperner ⇒ Nash-Williams ⇒ Ramsey.

Definition 2.4 A Nash-Williams family F such that for every 𝑀 ∈ [𝜔]𝜔 there is an
initial segment 𝑠 ⊑ 𝑀 with 𝑠 ∈ F is called a front. If moreover F is Sperner, we say that
F is a barrier on 𝜔.

The same argument for Proposition 2.2 can be used to show the following facts:

Fact 2.5 If F is a front on a countable set 𝑀 , there exists 𝑁 ∈ [𝑀]𝜔 such that F |𝑁 is a
barrier.
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4 Corral et al.

Fact 2.6 For every barrierB on𝑀 , if we partitionB = B0⊔· · ·⊔B𝑛, there are 𝑁 ∈ [𝑀]𝜔
and 𝑖 ≤ 𝑛 such that B𝑖 |𝑁 is a barrier.

Given a barrier B, let

𝑇 (B) = {𝑠 ∈ [𝜔]<𝜔 : ∃𝑡 ∈ B (𝑠 ⊑ 𝑡)}

and 𝜌𝑇 (B) : 𝑇 (B) → 𝜔1 be given by

𝜌𝑇 (B) (𝑠) = sup{𝜌𝑇 (B) (𝑡) + 1 : 𝑡 ∈ 𝑇 (B) ∧ 𝑠 ⊏ 𝑡},

where sup ∅ = 0. We will omit the subindex𝑇 (B) or replace it byB when no confusion
arises and we will often think of 𝑇 (B) as a subtree of 𝜔<𝜔 .

Definition 2.7 For a barrier B on a countable set 𝑀 , its rank is defined by 𝜌(B) :=
𝜌𝑇 (B) (∅).

It is worth to point out that in the definition of 𝑇 (B), we can replace the condition
of being an initial segment of an element 𝑡 ∈ B, to being a subset of some 𝑡′ ∈ B due to
the following fact.

Lemma 2.8 If B is a barrier on 𝜔, then for every 𝑠 ∈ [𝜔]<𝜔 , there exists 𝑏 ∈ B such that
𝑠 ⊆ 𝑏 if and only if there exists 𝑏 ∈ B such that 𝑠 ⊑ 𝑏. In particular𝑇 (B) = {𝑠 ∈ [𝜔]<𝜔 :
∃𝑏 ∈ B (𝑠 ⊆ 𝑏)}.

Proof: Let 𝑠 ∈ [𝜔]<𝜔 and 𝑏 ∈ B such that 𝑠 ⊆ 𝑏. Define 𝑀 = 𝑠 ∪ (𝜔 \max(𝑏) + 1).
We can find 𝑏′ ∈ B such that 𝑏′ ⊑ 𝑀 and hence 𝑠 ⊑ 𝑏′ since otherwise 𝑏′ ⊏ 𝑠 ⊆ 𝑏

would contradict that B is a ⊆-antichain. ■

Given 𝑎 = {𝑎0, . . . , 𝑎𝑛} and 𝑏 = {𝑏0, . . . , 𝑏𝑘} with 𝑘 < 𝑛, denote by 𝑎 ∗ 𝑏 the end
replacement of 𝑎 with 𝑏, defined as follows:

𝑎 ∗ 𝑏 = {𝑎0, . . . , 𝑎𝑛−𝑘−1, 𝑏0, . . . , 𝑏𝑘}.

Lemma 2.9 Let B be a barrier and 𝑎 ∈ B enumerated as 𝑎 = {𝑎0, . . . , 𝑎𝑛−1}. Then for
every 𝑏 ∈ [𝜔 \ (𝑎𝑛−1)]<𝑛, there exists 𝑠 ∈ B such that 𝑎 ∗ 𝑏 ⊑ 𝑠. In particular, 𝑏 ∉ B.

Proof: Fix 𝑎 = {𝑎0, . . . , 𝑎𝑛−1} and 𝑏 = {𝑏0, . . . , 𝑏𝑘−1} as in the lemma with 𝑘 < 𝑛.
We will prove the Lemma by induction on 𝑘 .

If 𝑘 = 1 then 𝑏 = {𝑏0} for some 𝑏0 ≥ 𝑎𝑛−1. Let𝑀 ∈ [𝜔]𝜔 with 𝑎 ∗𝑏 ⊑ 𝑀 . There is
an 𝑠 ∈ B such that 𝑠 ⊑ 𝑀 . Notice that |𝑠 | ≥ 𝑛 since otherwise 𝑠 ⊏ 𝑎 would contradict
that B is Sperner. Thus 𝑎 ∗ 𝑏 ⊑ 𝑠 ∈ B.

Now let 𝑘 > 1 and assume the result is true for 𝑘 − 1. Pick any 𝑀 ∈ [𝜔]𝜔such
that 𝑎 ∗ 𝑏 ⊑ 𝑀 and let 𝑠 ∈ B be an initial segment of 𝑀 . If |𝑠 | < 𝑛, then
𝑠 ⊑ {𝑎0, . . . , 𝑎𝑛−𝑘−1, 𝑏0, . . . , 𝑏𝑘−2} ⊆ {𝑎0, . . . , 𝑎𝑛−𝑘 , 𝑏0, . . . , 𝑏𝑘−2} = 𝑎 ∗ 𝑏′ where
𝑏′ = {𝑏0, . . . , 𝑏𝑘−2}. Since |𝑏′ | = 𝑘 − 1, by the inductive hypothesis we get that
𝑠 ⊊ 𝑎 ∗ 𝑏′ ⊑ 𝑠′ for some 𝑠′ ∈ B, contradicting thatB is Sperner. Therefore |𝑠 | ≥ 𝑛 and
hence 𝑎 ∗ 𝑏 ⊑ 𝑠 ∈ B. ■
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Infinite dimensional sequential compactness 5

Corollary 2.10 If B is a barrier on 𝜔 of rank 𝑘 ∈ N, there exists 𝑚 ∈ 𝜔 such that B|(𝜔 \
𝑚) = [𝜔 \ 𝑚]𝑘 .

Proof: Let B be a barrier of rank 𝑘 . If there is 𝑎 ∈ B of size 𝑙 , then 𝜌(B) ≥ 𝑙 . Thus
B ⊆ [𝜔]≤𝑘 . It is also easy to see that B ∩ [𝜔]𝑘 ≠ ∅ since otherwise 𝜌(B) < 𝑘 .

Take any 𝑎 ∈ B ∩ [𝜔]𝑘 and let 𝑚 = max(𝑎) + 1. By Lemma 2.9, if 𝑏 ∈ B|(𝜔 \ 𝑚)
has size less than 𝑘 , we can find 𝑠 ∈ B such that 𝑏′ = 𝑎 ∗ 𝑏 ⊑ 𝑠. As |𝑏 | < 𝑘 we have that
𝑏 ⊊ 𝑏′ ⊑ 𝑠, which contradicts that B is Sperner. Hence B|(𝜔 \ 𝑚) ⊆ [𝜔 \ 𝑚]𝑘 .

On the other hand, for every 𝑏 ∈ [𝜔 \ 𝑚]𝑘 , we can take an infinite set 𝑀 such that
𝑏 ⊏ 𝑀 . Thus there is an initial segment of 𝑀 in B and from the previous inclusion it
must be the case that 𝑏 ∈ B. Therefore B|(𝜔 \ 𝑚) = [𝜔 \ 𝑚]𝑘 . ■

Notation 2.11 Given a family B ⊆ [𝜔]<𝜔 , 𝑠 ∈ [𝜔]<𝜔 and 𝑛 ∈ 𝜔 set

• B(𝑠) = {𝑡 ∈ B : 𝑠 ⊑ 𝑡},
• B[𝑠] = {𝑡 \ 𝑠 : 𝑡 ∈ B(𝑠)},
• 𝑠⌢B = {𝑠 ∪ 𝑡 : 𝑡 ∈ B ∧ min(𝑡) > max(𝑠)},
• B + 𝑛 = {𝑠 + 𝑛 : 𝑠 ∈ B}, where 𝑠 + 𝑛 = {𝑚 + 𝑛 : 𝑚 ∈ 𝑠}.

We write B(𝑛), B[𝑛] and 𝑛⌢B instead of B({𝑛}), B[{𝑛}] and {𝑛}⌢B respectively.
Notice that some confusionmay arise as 𝑛 = {0, . . . , 𝑛−1} but this notation won’t lead
to any confusion as B(𝑛) will always be interpreted as B({𝑛}) and the same for B[𝑛]
and 𝑛⌢B. We see that if B is a barrier on 𝑀 , then B[𝑛] is a barrier on 𝑀 \ (𝑛 + 1).
Conversely, if B𝑛 is a barrier on 𝑀 \ (𝑛 + 1) for every 𝑛 ∈ 𝑀 , then

⋃
𝑛∈𝑀 𝑛

⌢B𝑛 is a
front on 𝑀 and there is an infinite set on which its restriction is a barrier. We can now
describe a canonical barrier of rank 𝜔: The Schreier barrier S is the barrier of rank 𝜔
such that {0} ∈ S and S[𝑛] = [𝜔 \ (𝑛 + 1)]𝑛 for every 𝑛 > 0. In other words, 𝑠 ∈ S if
and only if |𝑠 | = min(𝑠) + 1.

Definition 2.12 We define the notion of an uniform barrier by induction on the rank.
For 𝛼 = 1, we declare the unique barrier B = [𝜔]1 as an uniform barrier. Let B be a
barrier on 𝑀 ∈ [𝜔]𝜔 with 𝜌(B) = 𝛼. If 𝛼 > 1, we say that B is an uniform barrier if
each B[𝑛] is an uniform barrier (on 𝑀 \ (𝑛 + 1)) and

• 𝜌𝑇 (B) ({𝑛}) = 𝛽 for every 𝑛 ∈ 𝜔 if 𝛼 = 𝛽 + 1 or
• {𝜌𝑇 (B) ({𝑛}) : 𝑛 ∈ 𝜔} is an increasing sequence with limit 𝛼 if 𝛼 is limit.

The following result together with Corollary 2.10 shows that all barriers of rank 𝜔
are somewhere uniform and preserve its rank in such restriction.

Proposition 2.13 If B is a barrier of rank 𝜔, there exists 𝑀 ∈ [𝜔]𝜔 such that B|𝑀 is
uniform and has rank 𝜔.

Proof: By definition, we can find𝑚𝑖 such that 𝜌({𝑚𝑖}) ≥ 𝑖 for every 𝑖 ∈ 𝜔. By Corol-
lary 2.10, we can also find 𝑘𝑖 for every 𝑖 ∈ 𝜔, such that B[𝑚𝑖] = [𝜔 \ 𝑘𝑖]𝑛𝑖 , where
𝑛𝑖 = 𝜌({𝑚𝑖}). Notice that we can pick {𝑚𝑖 : 𝑖 ∈ 𝜔} increasing and such that𝑚𝑖+1 > 𝑘𝑖 .
It is now easy to see that 𝑀 = {𝑚𝑖 : 𝑖 ∈ 𝜔} works. ■
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6 Corral et al.

A partial analogue for Proposition 2.13 for any barrier independently of its rank is
also true.

Proposition 2.14 [1] For every barrier B on 𝜔 there exists an infinite set 𝑀 ∈ [𝜔]𝜔
such that B|𝑀 is uniform. ■

By Corollary 2.10, the only uniform barrier of rank 𝑘 ∈ 𝜔 is [𝜔]𝑘 . Thus Lemma 2.9
states that the sequence of ranks {𝜌({𝑛}) : 𝑛 ∈ 𝜔} is non decreasing and the sequence
{𝑚𝑖 : 𝑖 ∈ 𝜔} can be taken to be the identity in the previous theorem. This shows that
the only way to get a non-uniform barrier of rank 𝜔 is by embedding a non-uniform
barrierB[𝑛] on top of {𝑛}, hence essentially, every barrier of rank𝜔 is uniform. This is
as far as we can go since there is a non uniform barrier B of rank 𝜔 + 1 such that B[𝑛]
is uniform for every 𝑛 ∈ 𝜔.

Example 2.15 There is a non-uniform barrier of rank 𝜔 + 1.
We define a barrier B by describing B(𝑛) for every 𝑛 ∈ 𝜔. For every 𝑘 ∈ 𝜔, let

S𝑘 = {𝑠 ∈ [𝜔]<𝜔 : |𝑠 | = min(𝑠) + 𝑘}, (hence the Schreier barrier is S1). If 𝑛 is even
define B(𝑛) = 𝑛⌢ (S𝑛 + 𝑛 + 1). For 𝑛 odd let B(𝑛) = 𝑛⌢ [𝜔 \ (𝑛 + 1)]𝑛.

Notice that for 𝑛 even, 𝜌𝑇 (B) ({𝑛}) = 𝜔 while for 𝑛 odd, 𝜌𝑇 (B) ({𝑛}) = 𝑛 + 1. So B
is not uniform. Moreover, 𝜌(B|𝐸) = 𝜔 + 1 but 𝜌(B|𝑂) = 𝜔, where 𝐸 is the set of even
numbers and𝑂 is the set of odd numbers.

It is clear that every infinite subset of𝜔 has an initial segment inB and that eachB(𝑛)
is a ⊆-antichain. It remains to show that if 𝑠 = {𝑠0, . . . , 𝑠𝑖} ∈ B(𝑛), 𝑡 = {𝑡0, . . . , 𝑡 𝑗 } ∈
B(𝑚) and 𝑛 < 𝑚, then 𝑡 ⊈ 𝑠 (the other contention is impossible as 𝑛 ∈ 𝑠 \ 𝑡).

Let us first compute the size of an element 𝑏 ∈ B. Let 𝑏 = {𝑏0, . . . , 𝑏𝑘}. If 𝑏0
is odd, then 𝑏 ∈ B(𝑏0) and it has size 𝑏0 + 1. Otherwise, 𝑏 ∈ 𝑏⌢0 (S𝑏0 + 𝑏0 + 1).
Let 𝑏′ = 𝑏 \ {𝑏0} ∈ S𝑏0 + 𝑏0 + 1. It is clear that |𝑏′ | = |𝑏′ − 𝑏0 − 1| and since
(𝑏′ − 𝑏0 − 1) ∈ S𝑏0 and min(𝑏′ − 𝑏0 − 1) = 𝑏1 − 𝑏0 − 1, we conclude that |𝑏′ | =
|𝑏′ − 𝑏0 − 1| = (𝑏1 − 𝑏0 − 1) + 𝑏0 = 𝑏1 − 1. Therefore |𝑏 | = 𝑏1.

We are now ready to show that 𝑠 and 𝑡 are ⊆-incomparable. If both 𝑛 and 𝑚 are odd
we have that |𝑡 | = 𝑚 + 1 > 𝑛 + 1 = |𝑠 | and we are done. If both 𝑛 and 𝑚 are even, then
|𝑠 | = 𝑠1 and |𝑡 | = 𝑡1 but 𝑠0 = 𝑛 ∉ 𝑡 implies that if 𝑡 ⊆ 𝑠, hence |𝑠 | = 𝑠1 ≤ 𝑡0 < 𝑡1 = |𝑡 |,
which is a contradiction.
Similarly if 𝑛 is odd and 𝑚 is even, assuming that 𝑡 ⊆ 𝑠 yields that |𝑡 | = 𝑡1 > 𝑡0 ≥ 𝑠1 ≥
𝑠0 + 1 = |𝑠 |, a contradiction. Finally, if 𝑛 is even and 𝑚 is odd, and if we assume that
𝑡 ⊆ 𝑠 we reach a contradiction as |𝑡 | = 𝑡0 + 1 > 𝑡0 ≥ 𝑠1 = |𝑠 |. ■

The persistence of the rank under restriction for a uniformbarrier is the key property
of the notion of uniformity.We can imitate this behaviour by considering a lower bound
for the ranks of uniform restrictions of a given barrier B.

Definition 2.16 Given a barrier B, let

𝑠𝑝𝑒𝑐(B) = {𝛼 < 𝜔1 : ∃𝑀 ∈ [𝜔]𝜔 (B|𝑀 is uniform with rank 𝛼)}.

We define the uniform rank of B as 𝜌𝑢 (B) = min(𝑠𝑝𝑒𝑐(B)).
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In [19], it is inductively proved that sequentially compact spaces of character less
that 𝔟 are 𝑛-sequentially compact for every 𝑛. To perform the induction on [𝜔]𝑛+1, it is
enough to notice that any element of [𝜔]𝑛+1 has a unique initial segment in [𝜔]𝑛. It is
also true that any element in [𝜔]𝑛 is end-extended by at least one element in [𝜔]𝑛+1.
This fact is used to analyze a splitting-like cardinal invariant in [7] that helps with the
construction of 𝑛-sequentially compact spaces that fail to be (𝑛 + 1)-sequentially com-
pact under some assumptions involving this cardinal. Other examples of results that use
this fact, are Ramsey’s theorem itself and the proof that 𝔭𝔞𝔯𝑛 = 𝔭𝔞𝔯2 = max{𝔟, 𝔰} in
[2]. In order to obtain analogous results in our framework, we will need a generalization
of this fact for barriers of any rank. The statement of Lemma 2.18 below and its proof
appear in [1] in a slightly different way, we add here a proof for completeness.

Notation 2.17 Given two families B, C ⊆ [𝜔]<𝜔 we denote by B ⊑ C if

• ∀𝑠 ∈ B ∃𝑡 ∈ C (𝑠 ⊑ 𝑡),
• ∀𝑡 ∈ C ∃𝑠 ∈ B (𝑠 ⊑ 𝑡).

Lemma 2.18 Given two barriersB and C on a countable set 𝑁 ∈ [𝜔]𝜔 , there is an infinite
set 𝑀 ∈ [𝑁]𝜔 such that either B|𝑀 ⊑ C|𝑀 or C|𝑀 ⊑ B|𝑀 . Moreover, if 𝜌(B) < 𝜌(C)
and C is uniform, then B|𝑀 ⊑ C|𝑀 necessarily holds.

Proof: DefineB0 = {𝑏 ∈ B : ∃𝑐 ∈ C(𝑏 ⊆ 𝑐)}. SinceB = B0∪ (B \B0) we can find,
by Nash-Williams theorem, an infinite set𝑀 ∈ [𝑁]𝜔 such that either, (B \B0) |𝑀 = ∅
or B0 |𝑀 = ∅. If (B \ B0) |𝑀 = ∅ then we are done as this implies that B|𝑀 ⊑ C|𝑀 .
To see this notice that for every 𝑏 ∈ B|𝑀 ( and hence 𝑏 ∈ B0), there is 𝑐 ∈ C such that
𝑏 ⊆ 𝑐, but if we define 𝑋 = 𝑏 ∪ (𝑀 \ max(𝑏)), there is also 𝑐′ ∈ C such that 𝑐′ ⊑ 𝑋 .
As 𝑏 ⊆ 𝑐 ∈ C, it happens that 𝑏 ⊑ 𝑐′ and 𝑐′ ∈ C|𝑀 . For 𝑐 ∈ C|𝑀 , we can also find
𝑏 ∈ B|𝑀 such that 𝑏 ⊑ 𝑐 ∪ (𝑀 \ (max(𝑐) + 1)). The case where 𝑐 ⊏ 𝑏 is not possible
since 𝑏 ∈ B0 and thus there is another 𝑐′ ∈ C|𝑀 such that 𝑏 ⊆ 𝑐′.

Assume otherwise B0 |𝑀 = ∅ and define C0 = {𝑐 ∈ C|𝑀 : ∃𝑏 ∈ B|𝑀 (𝑐 ⊆ 𝑏)}.
Again by Nash-Williams theorem, we can find 𝑀 ′ ∈ [𝑀]𝜔 such that either C0 |𝑀 ′ = ∅
or (C \ C0) |𝑀 ′ = ∅. The case C0 |𝑀 ′ = ∅ is impossible since we can find 𝑏 ∈ B|𝑀 ′ ⊆
B|𝑀 and 𝑐 ∈ C|𝑀 ′ such that 𝑏, 𝑐 ⊑ 𝑀 ′ and then either 𝑏 ⊆ 𝑐 or 𝑐 ⊆ 𝑏 contradicting
the choices of 𝑀 and 𝑀 ′. Thus (C \ C0) |𝑀 ′ = ∅ and as in the previous case we get that
C|𝑀 ′ ⊑ B|𝑀 ′.

For the last assertion of the statement notice that if C|𝑀 ⊑ B|𝑀 , then 𝑇 (C|𝑀) ⊆
𝑇 (B|𝑀). In particular,

𝜌(C) = 𝜌(C|𝑀) = 𝜌𝑇 (C |𝑀 ) (∅) ≤ 𝜌𝑇 (B |𝑀 ) (∅) = 𝜌(B|𝑀) ≤ 𝜌(B),
which finishes the proof. ■

The previous lemma tells us that we can define a preorder on the family of all barriers
on 𝜔 by defining B ≤ C if there is an infinite set 𝑀 such that B|𝑀 ⊑ C|𝑀 . One
may be tempted to say that the partial order defined by identifying B and C if B ≤ C
and C ≤ B, collapses to 𝜔1 when restricted to the family of uniform barriers, that
is, B ≤ C if and only if 𝜌(B) ≤ 𝜌(C). However, the unpleasant fact about this is
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that for two barriers B and C of the same rank, it is not always true that B ≤ C and
C ≤ B. For example, if B is the Schreier barrier and C is any uniform barrier defined
such that 𝜌𝑇 (C) ({𝑛}) = 𝑓 (𝑛) for an increasing function 𝑓 ∈ 𝜔𝜔 that is strictly bigger
that the identity, thenC ≰ B. Notice that any uniform barrierB of rank𝜔 is completely
determined by a function 𝑓 ∈ 𝜔𝜔 that encodes the ranks of the first level on 𝑇 (B). A
more complex but naturally defined coding of the ranks of the successors of any element
𝑠 ∈ 𝑇 (B) also determines completely the structure of any barrier B.

We will see now that this function is the only obstruction and that, if one is willing to
compress some finite intervals of𝜔 into points, we can define aweaker relation between
barriers that depends only on their ranks and extends ≤. This will allow us to prove,
in some cases, that a property of barriers holds for all barriers of a given rank 𝛼 (in
particular a space being “B-sequentially compact”) if and only if it holds for some single
uniform barrier of the same rank (e.g., Corollary 3.5).

Definition 2.19 Given two barriers B and C on a countable set 𝑀 , we write C ⪯ B
if there is a finite-to-one, non decreasing function 𝑓 ∈ 𝜔𝜔 such that for every infinite
subset 𝑀 ′ ∈ [𝑀]𝜔 there exists 𝑁 ∈ [𝑀 ′]𝜔 so that 𝑓 ↾ 𝑁 is one-to-one and

• ∀𝑏 ∈ (B|𝑁) ∃𝑐 ∈ C (𝑐 ⊑ 𝑓 [𝑏]).

Notice that ifB is uniform and 𝜌(C) < 𝜌(B), then C ⪯ B with 𝑓 being the identity
map, sinceC|𝑀 ≤ B|𝑀 for every restriction to an infinite set𝑀 . The condition that 𝑓 ↾
𝑁 is one-to-one is superfluous as we can always shrink 𝑁 in order to get this property,
but it will be convenient to add this to the definition to avoid saying it explicitly each
time we use the preorder ⪯.
Having said this, it is clear that the relation ⪯ is transitive, that is, if C ⪯ B andD ⪯ C
is witnessed by 𝑓 and 𝑔 respectively, thenD ⪯ B and it is witnessed by 𝑔 ◦ 𝑓 .

Proposition 2.20 If B and C are two barriers in 𝜔, B is uniform and 𝜌(B) ≥ 𝜌(C),
then C ⪯ B.

Proof: Let us alternately define two sequences {𝑎𝑖 : 𝑖 ∈ 𝜔} and {𝑏𝑖 : 𝑖 ∈ 𝜔} such
that 𝑎𝑖 < 𝑏𝑖 < 𝑎𝑖+1 for every 𝑖 ∈ 𝜔. We will also denote by {𝑘𝑖 : 𝑖 ∈ 𝜔} the increasing
sequence defined by these two sequences, that is, 𝑘2𝑖 = 𝑎𝑖 and 𝑘2𝑖+1 = 𝑏𝑖 . We will
also simultaneously define 𝑓 ∈ 𝜔𝜔 which is completely determined by the sequence
{𝑘𝑖 : 𝑖 ∈ 𝜔} as follows: 𝑓 ↾ [0, 𝑘0) = 0 and 𝑓 (𝑛) = 𝑖 if and only if 𝑛 ∈ [𝑘𝑖 , 𝑘𝑖+1).
We shall show that 𝑓 satisfies the definition of C ⪯ B. To save notation, let us write 𝜌B
and 𝜌C instead of 𝜌𝑇 (B) and 𝜌𝑇 (C) respectively. Also, given 𝑠 ∈ [𝜔]𝜔 \ 𝑇 (C) we will
define 𝜌C (𝑠) = −1 so that we can talk about the rank of 𝑠 even if 𝑠 is not in 𝑇 (C).

Step 0:
Since 𝜌B (∅) ≥ 𝜌C (∅), there are 𝑎0 < 𝑏0 < 𝜔 such that 𝜌B ({𝑎0}) ≥ 𝜌C ({0}) and

𝜌B ({𝑏0}) ≥ 𝜌C ({1}).
Now assume we have defined {𝑎𝑖 : 𝑖 ≤ 𝑛} and {𝑏𝑖 : 𝑖 ≤ 𝑛}.
Step a:
Inductive hypothesis at 𝑛:
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Let us call

𝑆𝑎 (𝑛) =
{
𝑠 ∈ 𝑇 (B) : 𝑠 ⊆

⋃
𝑖<𝑛

[𝑎𝑖 , 𝑏𝑖) ∧ ∀𝑖 < 𝑛( |𝑠 ∩ [𝑎𝑖 , 𝑏𝑖) | ≤ 1)
}
.

We will ensure that the following inductive hypothesis will hold throughout the
construction: Given 𝑠 ∈ 𝑆𝑎 (𝑛)

𝜙𝑎 (𝑛, 𝑠) ≡ 𝜌B (𝑠) ≥ 𝜌C ( 𝑓 [𝑠])
𝜓𝑎 (𝑛, 𝑠) ≡ if 𝑗 ≥ 𝑎𝑛, then 𝜌B (𝑠 ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠 ∪ {2𝑛}]).

We will also write 𝜙𝑎 (𝑛) as a shorthand for ∀𝑠 ∈ 𝑆𝑎 (𝑛)𝜙𝑎 (𝑛, 𝑠) and 𝜓𝑎 (𝑛) as a
shorthand for ∀𝑠 ∈ 𝑆𝑎 (𝑛)𝜓𝑎 (𝑛, 𝑠). It is worth to point out that 𝑆𝑎 (𝑛), 𝜙𝑎 (𝑛, 𝑠) and
𝜓𝑎 (𝑛, 𝑠) do not mention 𝑏𝑛. Note that if 𝑗 ≥ 𝑎0 we have that 𝜌B ({ 𝑗}) ≥ 𝜌B ({𝑎0}) ≥
𝜌C ({0}) as B is uniform. Thus 𝜓𝑎 (0) is satisfied and 𝜙𝑎 (0) is vacuously satisfied too
(here 𝑆𝑎 (0) = {∅}).

Construction of 𝑎𝑛+1:
We need to take care of all 𝑠 ∈ 𝑆𝑎 (𝑛 + 1) (note that this set is well defined since it

only depends on {𝑎𝑖 , 𝑏𝑖 : 𝑖 ≤ 𝑛}).
First consider 𝑠 ∈ 𝑆𝑎 (𝑛). By 𝜙𝑎 (𝑛, 𝑠) we have that 𝜌B (𝑠) ≥ 𝜌C ( 𝑓 [𝑠]) and thus we

can find 𝑚𝑎𝑠 such that

(★𝑎1 ) 𝜌B (𝑠 ∪ {𝑚}) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 2}) for every 𝑚 ≥ 𝑚𝑎𝑠 .

Otherwise 𝑠 ∈ 𝑆𝑎 (𝑛+1) \ 𝑆𝑎 (𝑛) and we can write 𝑠′ = 𝑠 \ { 𝑗}where 𝑗 = max(𝑠) ≥
𝑎𝑛 and 𝑠′ ∈ 𝑆𝑎 (𝑛). Then we know that 𝜌B (𝑠′ ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠′] ∪ {2𝑛}) by 𝜓𝑎 (𝑛, 𝑠).
Since 𝑗 ∈ [𝑎𝑛, 𝑏𝑛), we have that 𝑓 ( 𝑗) = 2𝑛. Thus

(∗𝑎) 𝜌B (𝑠) = 𝜌B (𝑠′ ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠′] ∪ { 𝑓 ( 𝑗)}) = 𝜌C ( 𝑓 [𝑠′ ∪ { 𝑗}]) = 𝜌C ( 𝑓 [𝑠])

Then there is 𝑚𝑎𝑠 ∈ 𝜔 such that 𝜌B (𝑠 ∪ {𝑚𝑎𝑠 }) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 2}). Since B is
uniform,

(★𝑎2 ) 𝜌B (𝑠 ∪ {𝑚}) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 2}) for every 𝑚 ≥ 𝑚𝑎𝑠 .

Finally define
𝑎𝑛+1 = max{𝑚𝑎𝑠 | 𝑠 ∈ 𝑆𝑎 (𝑛 + 1)}.

Inductive hypothesis for 𝑛 + 1:
We want to see that 𝜙𝑎 (𝑛 + 1) and 𝜓𝑎 (𝑛 + 1) hold. Let 𝑠 ∈ 𝑆𝑎 (𝑛 + 1). If 𝑠 ∈ 𝑆𝑎 (𝑛)

then 𝜙𝑎 (𝑛+1, 𝑠) follows from 𝜙𝑎 (𝑛, 𝑠). In consequence we can assume that 𝑠 ∈ 𝑆𝑎 (𝑛+
1) \ 𝑆𝑎 (𝑛) and let 𝑠′ = 𝑠 \ { 𝑗} where 𝑗 = max(𝑠). Hence by (∗𝑎), we have that 𝜌B (𝑠) ≥
𝜌C ( 𝑓 [𝑠]) which means that 𝜙𝑛 (𝑛 + 1, 𝑠) holds and consequently 𝜙𝑎 (𝑛 + 1) does.

Now let us see that𝜓𝑎 (𝑛+1) is also true. Let 𝑠 ∈ 𝑆𝑎 (𝑛+1) and 𝑗 ≥ 𝑎𝑛+1. If 𝑠 ∈ 𝑆𝑎 (𝑛)
then𝑚𝑠𝑎 satisfies (★𝑎1 ) and if 𝑠 ∈ 𝑆𝑎 (𝑛+1) \𝑆𝑎 (𝑛) we have that𝑚𝑠𝑎 satisfies (★𝑎2 ), either
case, as 𝑎𝑛 + 1 ≥ 𝑚𝑠𝑎 we have that 𝜓𝑎 (𝑛 + 1, 𝑠) holds and so does 𝜓𝑎 (𝑛 + 1).

Step b:
Inductive hypothesis at 𝑛:
The construction is dual to that of part a. Let us start by calling

𝑆𝑏 (𝑛) =
{
𝑠 ∈ 𝑇 (B) : 𝑠 ⊆

⋃
𝑖<𝑛

[𝑏𝑖 , 𝑎𝑖+1) ∧ ∀𝑖 < 𝑛( |𝑠 ∩ [𝑏𝑖 , 𝑎𝑖+1) | ≤ 1)
}
.
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The corresponding inductive formulas for 𝑠 ∈ 𝑆𝑏 (𝑛) are now:

𝜙𝑏 (𝑛, 𝑠) ≡ 𝜌B (𝑠) ≥ 𝜌C ( 𝑓 [𝑠])
𝜓𝑏 (𝑛, 𝑠) ≡ if 𝑗 ≥ 𝑏𝑛, then 𝜌B (𝑠 ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠 ∪ {2𝑛 + 1}]).

We will write again 𝜙𝑏 (𝑛) and 𝜓𝑏 (𝑛) as shorthands for ∀𝑠 ∈ 𝑆𝑏 (𝑛)𝜙𝑎 (𝑛, 𝑠) and
∀𝑠 ∈ 𝑆𝑏 (𝑛)𝜓𝑎 (𝑛, 𝑠) respectively. In the particular case of 𝜙𝑏 , we have that it is the same
formula as 𝜙𝑎 with different domain. Since 𝑎𝑛+1 has already been defined, the interval
[𝑏𝑛, 𝑎𝑛+1) considered in 𝑆𝑏 (𝑛 + 1) makes completely sense.

Construction of 𝑏𝑛+1:
Given 𝑠 ∈ 𝑆𝑏 (𝑛), it follows from 𝜙𝑏 (𝑛, 𝑠) that 𝜌B (𝑠) ≥ 𝜌C ( 𝑓 [𝑠]) and thus we can

find 𝑚𝑏𝑠 such that

(★𝑏1 ) 𝜌B (𝑠 ∪ {𝑚}) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 3}) for every 𝑚 ≥ 𝑚𝑏𝑠 .

Otherwise 𝑠 ∈ 𝑆𝑏 (𝑛+1) \ 𝑆𝑏 (𝑛) and we can write 𝑠′ = 𝑠 \ { 𝑗} where 𝑗 = max(𝑠) ≥
𝑏𝑛 and 𝑠′ ∈ 𝑆𝑏 (𝑛). Thus 𝜌B (𝑠′ ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠′] ∪ {2𝑛 + 1}) by 𝜓𝑏 (𝑛, 𝑠). Since
𝑗 ∈ [𝑏𝑛, 𝑎𝑛+1), we have that 𝑓 ( 𝑗) = 2𝑛 + 1. Then

(∗𝑏) 𝜌B (𝑠) = 𝜌B (𝑠′ ∪ { 𝑗}) ≥ 𝜌C ( 𝑓 [𝑠′] ∪ { 𝑓 ( 𝑗)}) = 𝜌C ( 𝑓 [𝑠′ ∪ { 𝑗}]) = 𝜌C ( 𝑓 [𝑠])

We can again find 𝑚𝑏𝑠 ∈ 𝜔 such that 𝜌B (𝑠 ∪ {𝑚𝑏𝑠 }) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 3}) and
moreover

(★𝑏2 ) 𝜌B (𝑠 ∪ {𝑚}) ≥ 𝜌C ( 𝑓 [𝑠] ∪ {2𝑛 + 3}) for every 𝑚 ≥ 𝑚𝑏𝑠 .

We then define

𝑏𝑛+1 = max{𝑚𝑏𝑠 | 𝑠 ∈ 𝑆𝑏 (𝑛 + 1)}.

Inductive hypothesis for 𝑛 + 1:
If 𝑠 ∈ 𝑆𝑏 (𝑛) then 𝜙𝑏 (𝑛 + 1, 𝑠) follows from 𝜙𝑏 (𝑛, 𝑠) and otherwise 𝑠 ∈ 𝑆𝑏 (𝑛 +

1) \ 𝑆𝑏 (𝑛) can be written as 𝑠′ = 𝑠 \ { 𝑗} where 𝑗 = max(𝑠). By (∗𝑏), we have that
𝜌B (𝑠) ≥ 𝜌C ( 𝑓 [𝑠]) and then 𝜙𝑏 (𝑛 + 1) holds.

To see that 𝜓𝑏 (𝑛 + 1) is true, let 𝑠 ∈ 𝑆𝑏 (𝑛 + 1) and 𝑗 ≥ 𝑏𝑛+1. Then 𝑏𝑛+1 ≥ 𝑚𝑏𝑠 and
either by (★𝑏1 ) or (★𝑏2 ) we have that 𝜙𝑏 (𝑛 + 1, 𝑠) holds.

This finishes the construction and it remains to prove that 𝑓 works.

Clearly 𝑓 is finite-to-one and non-decreasing. Given 𝑀 ∈ [𝜔]𝜔 , we can find an
infinite subset 𝑁 ∈ [𝑀]𝜔 such that |𝑁 ∩ [𝑘𝑖 , 𝑘𝑖+1] | ≤ 1 for every 𝑖 ∈ 𝜔 and either
𝑁 ∩⋃

𝑖∈𝜔 [𝑘2𝑖 , 𝑘2𝑖+1) = ∅ or 𝑁 ∩⋃
𝑖∈𝜔 [𝑘2𝑖+1, 𝑘2𝑖+2) = ∅. Without loss of generality

assume that 𝑁 ⊆ ⋃
𝑖∈𝜔 [𝑘2𝑖 , 𝑘2𝑖+1) =

⋃
𝑖∈𝜔 [𝑎𝑖 , 𝑏𝑖).

Let now 𝑏 ∈ B|𝑁 . It follows from the choice of 𝑁 that there is an 𝑛 ∈ 𝜔 such that 𝑏 ∈
𝑆𝑎 (𝑛). By 𝜙𝑎 (𝑛, 𝑏) we know that 0 = 𝜌B (𝑏) ≥ 𝜌C ( 𝑓 [𝑏]). Necessarily 𝜌C ( 𝑓 [𝑏]) ∈
{0,−1}, but either case we can conclude that there is 𝑐 ∈ C such that 𝑐 ⊑ 𝑓 [𝑏]. This
finishes the proof. ■

The previous lemma is new and it is the last piece of the theory of barriers that we
need in order to prove that the general notion of barrier sequential compactness extend-
ing 𝑛-sequentially compact spaces, depends only on the rank of the associated uniform
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Infinite dimensional sequential compactness 11

barrier. In the case that B has rank 𝜔, we can drop the requirement that the barrier is
uniform.

Corollary 2.21 Let B and C be barriers on 𝜔 such that 𝜌(C) ≤ 𝜌(B) = 𝜔, then C ⪯ B.

Proof: By the fact that the preorder ⪯ is transitive and the previous Proposition, it
suffices to show that S ⪯ B where S is the Schreier barrier.

Since B has rank 𝜔, it follows from Lemma 2.9 that for every 𝑖 ∈ 𝜔, we can find 𝑚𝑖
such that 𝜌B (𝑚) ≥ 𝑖 + 1 for every 𝑚 ≥ 𝑚𝑖 . Let 𝑓 ∈ 𝜔𝜔 be given by 𝑓 (𝑛) = 𝑖 if and
only if 𝑛 ∈ [𝑚𝑖 , 𝑚𝑖+1) (and we define 𝑓 ↾ 𝑚0 arbitrarily). We claim that 𝑓 witnesses
that S ⪯ B.

Indeed, given 𝑀 ∈ [𝜔]𝜔 , we can find 𝑁0 ∈ [𝑀]𝜔 such that 𝑁0 ∩ [0, 𝑚0) = ∅ and
|𝑁0 ∩ [𝑚𝑖 , 𝑚𝑖+1) | ≤ 1 for every 𝑖 ∈ 𝜔. Let 𝑛0 = min(𝑁0) and for every 𝑖 ∈ 𝜔 define
𝑛𝑖+1 as follows: for each 𝑗 < 𝑖 + 1 we can apply Corollary 2.10 and find 𝑘 𝑗 such that
B[𝑛 𝑗 ] = [𝜔 \ 𝑘 𝑗 ]𝑟 for some 𝑟 ≥ 𝑙 where 𝑙 is the unique natural number such that
𝑛 𝑗 ∈ [𝑚𝑙 , 𝑚𝑙+1), pick 𝑛𝑖+1 > 𝑘 𝑗 for every 𝑗 < 𝑖 + 1. Thus 𝑁 = {𝑛𝑖 : 𝑖 ∈ 𝜔} ∈ [𝑀]𝜔 .

Fix 𝑏 ∈ (B|𝑁) and let 𝑛𝑖 = min(𝑏). It follows from the definitions that 𝑏 \ {𝑛𝑖} ∈
[𝜔 \ 𝑘 𝑗 ]𝑟 for some 𝑟 ≥ 𝑙 where 𝑛𝑖 ∈ [𝑚𝑙 , 𝑚𝑙+1). Then | 𝑓 [𝑏] | ≥ 𝑙 + 1 as 𝑓 is one to one
on 𝑁 but 𝑓 (𝑛𝑖) = 𝑙 and S(𝑙) = {𝑠 ∈ [𝜔]<𝜔 : min(𝑠) = 𝑙 ∧ |𝑠 | = 𝑙 + 1}. Thus we can
conclude that 𝑐 ⊑ 𝑓 [𝑏] defined as the first 𝑙+1 elements of 𝑓 [𝑏] is an element ofS. ■

3 Infinite dimensional sequential compactness

We now define the notion of B-sequential compactness for barriers B and prove nec-
essary results to formulate the natural notion of 𝛼-sequential compactness, where 𝛼 ∈
𝜔1 corresponds to the rank of the barrier. All the results of this section are natural
generalizations of results presented in [19] for finite 𝑛.

Definition 3.1 LetB be a barrier on𝑀 ∈ [𝜔]𝜔 , let 𝑋 be a topological space, 𝑓 : B →
𝑋 and 𝑥 ∈ 𝑋 . We say that 𝑓 converges to 𝑥 if for all𝑈 ∈ N (𝑥) there is 𝑛 ∈ 𝜔 such that
𝑓 [(B|(𝑀 \ 𝑛))] ⊆ 𝑈.

The word “converges” might give rise to misunderstanding as 𝑓 has countable
domain, however, themeaning of this wordwill be understood by the context. The func-
tion 𝑓 should be thought as a B-dimensional sequence or 𝛼-dimensional sequence for
𝛼 = 𝜌(B), rather than a classical 1-dimensional sequence indexed by the countable set
B.

Definition 3.2 Let B be a barrier on 𝜔 and let 𝑋 be a topological space. We say that 𝑋
is B-sequentially compact if for all 𝑓 : B → 𝑋 there is 𝑀 ∈ [𝜔]𝜔 such that 𝑓 ↾ (B|𝑀)
converges.

The natural stratification of barriers given by their ranks will give us a natural clas-
sification of B-sequentially compact spaces grouping them and associating them to a
countable ordinal attending the following definition:
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12 Corral et al.

Definition 3.3 Let 𝛼 < 𝜔1. We say that 𝑋 is 𝛼-sequentially compact if 𝑋 is B-
sequentially compact for all barriers B of rank 𝛼.

The first application of the theory developed in Section 2 and themain reason for the
introduction of the order ⪯ is due to the next theorem:

Theorem 3.4 If C ⪯ B and 𝑋 is B-sequentially compact then 𝑋 is also C-sequentially
compact.

Proof: Assume 𝑋 is B sequentially compact and let 𝑓 ∈ 𝜔𝜔 as in the definition of
C ⪯ B. Let ℎ : C → 𝑋 and define ℎ̂ : B → 𝑋 by ℎ̂(𝑏) = ℎ(𝑐) for any 𝑐 ∈ C that is
⊑-compatible with 𝑓 [𝑏]. Notice that since C is a barrier, there is at least one of such 𝑐
and then ℎ̂ is well defined.

Since 𝑋 is B-sequentially compact, there is 𝑀 ∈ [𝜔]𝜔 such that ℎ̂ ↾ (B|𝑀)
converges to some 𝑥 ∈ 𝑋 . Take 𝑁 ∈ [𝑀]𝜔 such that

∀𝑏 ∈ (B|𝑁) ∃𝑐 ∈ C (𝑐 ⊑ 𝑓 [𝑏])

given by the definition of C ⪯ B and define 𝑀0 = 𝑓 [𝑁]. It turns out that ℎ̂ ↾ (B|𝑁)
also converges to 𝑥. We shall prove that ℎ ↾ (C|𝑀0) converges to the same 𝑥 ∈ 𝑋 .

To see this fix an open neighborhood𝑈 ∈ N (𝑥). We can find 𝑛 ∈ 𝜔 such that ℎ̂(𝑏) ∈
𝑈 whenever 𝑏 ∈ B|(𝑁 \ 𝑛). Take 𝑐 ∈ C|(𝑀0 \ 𝑓 (𝑛)). Thus 𝑐 = { 𝑓 (𝑚0), . . . , 𝑓 (𝑚 𝑗 )}
for some set 𝑎 = {𝑚𝑖 : 𝑖 ≤ 𝑗} ⊆ 𝑁 \ 𝑛. Take any infinite set 𝑁 ′ ⊆ 𝑁 such that
𝑎 ⊑ 𝑁 ′. We can find 𝑏 ∈ B|𝑁 such that 𝑏 ⊑ 𝑁 ′. It follows that 𝑎 ⊑ 𝑏 since otherwise
𝑓 [𝑏] ⊏ 𝑓 [𝑎] = 𝑐 would contradict that 𝑏 ⊆ 𝑁 . Therefore ℎ(𝑐) = ℎ̂(𝑏) ∈ 𝑈 as
desired. ■

Corollary 3.5 Let 𝑋 be a topological space and 𝛼 ∈ 𝜔1, the following are equivalent:

(1) 𝑋 is 𝛼-sequentially compact,
(2) 𝑋 is B-sequentially compact for every uniform barrier of rank 𝛼,
(3) 𝑋 is B-sequentially compact for some uniform barrier B of rank 𝛼.

Proof: That (3) implies (1) follows directly from Proposition 2.20 and Theorem 3.4.
The other implications are clear from the definitions. ■

From Lemma 2.20 and Theorem 3.4 we can easily get the following result.

Corollary 3.6 If 𝑋 is 𝛼-sequentially compact and 𝛽 < 𝛼 then 𝑋 is 𝛽-sequentially compact.
In particular, if 𝛼 is infinite, 𝑋 is 𝑛-sequentially compact for every 𝑛 ∈ 𝜔. ■

The stronger result for barriers of rank𝜔 given inCorollary 2.21 yields the following
result:

Corollary 3.7 If 𝑋 is B-sequentially compact for some barrier of rank 𝜔 (not necessarily
uniform), then 𝑋 is 𝜔-sequentially compact. ■
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Infinite dimensional sequential compactness 13

In general, this is not true for every countable ordinal. A trivial example is a barrier
with a single node in𝑇 (B) of rank𝜔 (let us say {0}) and such thatB|(𝜔\1) is isomorphic
to S2. In this case, every infinite restriction has rank 𝜔 but the barrier itself has rank
𝜔 + 1. It is not hard to modify our constructions in Section 5 to show that, consistently,
there is aB sequentially compact space that is not (𝜔 + 1)-sequentially compact. We do
not know if the requirement thatB has an infinite restriction of rank 𝛼 suffices in order
to show thatB-sequentially compact spaces are𝛼-sequentially compact.We believe that
the answer is “no” but we conjecture that a weaker result is true.

Conjecture 3.8 If 𝑋 is B-sequentially compact, then it is 𝜌𝑢 (B)-sequentially compact.

The following easy fact is a partial answer to Conjecture 3.8.

Proposition 3.9 LetB be a barrier on𝜔 and 𝑋 aB-sequentially compact space. If there
is 𝑀 ∈ [𝜔]𝜔 such that B|𝑀 is uniform and either 𝑋 is not (B|(𝜔 \ 𝑀))–sequentially
compact or 𝜔 \ 𝑀 is finite, then 𝑋 is 𝜌(B|𝑀)-sequentially compact. In particular 𝑋 is
𝜌𝑢 (B)-sequentially compact.

Proof: By Corollary 3.5 it is enough to prove that 𝑋 is (B|𝑀)-sequentially compact.
Let 𝐹 := 𝜔 \ 𝑀 . Regardless 𝐹 is finite or 𝑋 is not (B|𝐹)-sequentially compact, there
exists a function 𝑔 : B|𝐹 → 𝑋 without infinite convergence subsequences (here con-
vergence means convergence with respect to barriers). Now let 𝑓 : B|𝑀 → 𝑋 . We
want to prove that 𝑓 admits an infinite convergent subsequence 𝑓 ↾ (B|𝑀 ′) for some
𝑀 ′ ∈ [𝜔]𝜔 . For this let 𝑓 : B → 𝑋 be any common extension of both 𝑓 and 𝑔. As 𝑋 is
B-sequentially compact, there is 𝑁 ∈ [𝜔]𝜔 such that 𝑓 ↾ 𝑁 is convergent. Now 𝑁 ∩ 𝐹
should be finite, since otherwise 𝑓 ↾ (𝑁 ∩ 𝐹) would also be an infinite convergent sub-
sequence for 𝑔. This way 𝑁 ′ := 𝑁 \𝐹 is infinite and thus 𝑓 ↾ 𝑁 ′ = 𝑓 ↾ 𝑁 ′ is an infinite
convergent subsequence for 𝑓 . ■

4 Some classes of 𝜔1-sequentially compact spaces

In [19], it is proved that compact metric spaces are 𝑛-sequentially compact for every
𝑛 ∈ 𝜔. This result extends to any 𝛼 < 𝜔1. Wewill start this section by giving two classes
of spaces, each containing the class of compact metric spaces, that sit at the top of the
hierarchy of 𝛼-sequentially compact spaces.

Definition 4.1 We say that 𝑋 is 𝜔1-sequentially compact, if it is 𝛼-sequentially compact
for every 𝛼 < 𝜔1.

The first class of spaces that we want to show to be 𝜔1-sequentially compact, is the
class of sequentially compact spaces of character less that 𝔟. The fact that sequentially
compact spaces of character less that 𝔟 are 𝑛-sequentially compact for every 𝑛 ∈ 𝜔, was
proved in [19].

Theorem 4.2 Suppose 𝑋 is a sequentially compact space. If 𝜒(𝑋) < 𝔟 then 𝑋 is 𝜔1-
sequentially compact.
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Proof: Wewill show by induction that 𝑋 is 𝛼-sequentially compact for every 𝛼 < 𝜔1.
If 𝛼 = 1, then 𝑋 being sequentially compact is equivalent to 𝑋 being 1-sequentially
compact as the only uniform barrier of rank 1 is [𝜔]1.

We proceed to prove the inductive step at 𝛽, regardless of it being a successor ordinal,
and hence of the form 𝛽 = 𝛼 + 1 or a limit ordinal which would then be the sup𝛼𝑛,
where 𝛼𝑛 form an increasing sequence. Now let 𝑓 : B → 𝑋 be any function where B
is uniform of rank 𝛽. For all 𝑛 ∈ 𝜔, B[𝑛] is either an 𝛼-uniform barrier on 𝜔 \ (𝑛 + 1)
or an 𝛼𝑛-uniform barrier if 𝛽 were a limit ordinal.

For all 𝑛 ∈ 𝜔 let 𝑓𝑛 : B[𝑛] → 𝑋 be the function mapping 𝑠 ↦→ 𝑓 ({𝑛} ∪ 𝑠). By
our inductive hypothesis there is an infinite subset 𝑁0 and a point 𝑥0 ∈ 𝑋 such that
𝑓0 ↾ (B[0] |𝑁0) → 𝑥0. Let 𝑛0 = 0 and 𝑛1 = min 𝑁0 \ {0}.

Note that for any infinite subset 𝐴 of 𝜔 and any 𝑛 ∈ 𝜔, B[𝑛] |𝐴 is also uniform
of rank 𝛼 if 𝛽 = 𝛼 + 1 or of rank 𝛼𝑛 if 𝛽 were a limit ordinal. Now suppose that we
have defined a decreasing sequence of infinite subsets 𝑁0 ⊇ 𝑁1 ⊇ · · · ⊇ 𝑁𝑖−1, and
an increasing sequence 𝑛0 < 𝑛1 < · · · < 𝑛𝑖 in addition to a subset {𝑥0, . . . , 𝑥𝑖−1} of
𝑋 . Consider the function 𝑓𝑛𝑖 : (B[𝑛𝑖] |𝑁𝑖−1) → 𝑋 , applying our inductive hypothesis
yields an infinite subset 𝑁𝑖 ⊆ 𝑁𝑖−1 such that 𝑓𝑛𝑖 ↾ (B[𝑛𝑖] |𝑁𝑖) → 𝑥𝑖 , for some point
𝑥𝑖 ∈ 𝑋 . We also define 𝑛𝑖+1 = min(𝑁𝑖 \ {𝑛0, . . . , 𝑛𝑖}). Thereby, we obtain a decreasing
sequence of infinite subsets 𝑁0 ⊇ 𝑁1 ⊇ 𝑁2 ⊇ . . . , a subset {𝑥𝑖 : 𝑖 ∈ 𝜔} of the space 𝑋
and a strictly increasing sequence ⟨𝑛𝑖 : 𝑖 ∈ 𝜔⟩ such that 𝑓𝑛𝑖 ↾ (B[𝑛𝑖] |𝑁𝑖) → 𝑥𝑖 where
𝑛𝑖+1 = min 𝑁𝑖 \ {𝑛0, . . . , 𝑛𝑖} for all 𝑖 ∈ 𝜔.

Since {𝑥𝑖 : 𝑖 ∈ 𝜔} ⊆ 𝑋 and 𝑋 is sequentially compact, there is a convergent subse-
quence, 𝑌 = {𝑥𝑖 𝑗 : 𝑗 ∈ 𝜔}, with limit point 𝑥. Re-numerating the indices, we can view
𝑌 = {𝑥𝑖 : 𝑖 ∈ 𝜔} as the convergent subsequence. Also, let 𝑁 = {𝑛𝑖 : 𝑖 ∈ 𝜔}

Take any open set 𝑈 in 𝑋 containing the point 𝑥. As 𝑥𝑖 → 𝑥 there is an integer
𝑚𝑈 ∈ 𝜔 such that for all 𝑖 > 𝑚𝑈 we have that 𝑥𝑖 ∈ 𝑈. Also, for all such 𝑖 there is
another integer 𝜙𝑈 (𝑛𝑖) such that

𝑓𝑛𝑖 [B[𝑛𝑖] | (𝑁𝑖 \ 𝜙𝑈 (𝑛𝑖))] ⊆ 𝑈. (∗)

For any 𝑗 ≤ 𝑚𝑈 and any 𝑗 ∉ {𝑛𝑖 : 𝑖 ∈ 𝜔} let 𝜙𝑈 ( 𝑗) = 0. Thus, any open subset𝑈 of
𝑋 containing 𝑥, induces a function 𝜙𝑈 : 𝜔 → 𝜔.

Let 𝜂(𝑥) be a local neighborhood base of 𝑥 of minimum size. Since 𝜒(𝑋) < 𝔟 the set
of functions {𝜙𝑈 : 𝑈 ∈ 𝜂(𝑥)} is bounded by some increasing function 𝜓 : 𝜔 → 𝜔, that
is 𝜙𝑈 <∗ 𝜓 for every𝑈 ∈ 𝜂(𝑥).

We can find an increasing subsequence ⟨𝑚𝑖 : 𝑖 ∈ 𝜔⟩ of ⟨𝑛𝑖 : 𝑖 ∈ 𝜔⟩ such that𝑚𝑖+1 >
𝜓(𝑚𝑖) for every 𝑖 ∈ 𝜔. We claim that 𝑓 ↾ (B|𝑀) → 𝑥 where 𝑀 = {𝑚𝑖 : 𝑖 ∈ 𝜔}.

Fix an open set𝑈 ∈ 𝜂(𝑥) and let 𝑘 ∈ 𝜔 such that 𝑥 𝑗 ∈ 𝑈 and𝜓( 𝑗) > 𝜙𝑈 ( 𝑗) for every
𝑗 ≥ 𝑘 . Let 𝑠 ∈ B|(𝑀 \ 𝜓(𝑘)) and let us write 𝑠 = {𝑚𝑘0 , . . . , 𝑚𝑘𝑛 } and 𝑠′ = 𝑠 \ {𝑚𝑘0 }.
Note that for every 𝑖 > 0, we have that

𝑚𝑘𝑖 > 𝜓(𝑚𝑘0 ) > 𝜙(𝑚𝑘0 ),

as 𝑚𝑘0 ≥ 𝜓(𝑘) ≥ 𝑘 . In particular, 𝑠′ ∩ 𝜙(𝑚𝑘0 ) = ∅.
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Now let 𝑗 ∈ 𝜔 such that 𝑚𝑘0 = 𝑛 𝑗 . Note that if 𝑗 ′ > 𝑗 , then 𝑛 𝑗′ ∈ 𝑁 𝑗 . As any
𝑚𝑘𝑖 > 𝑚𝑘0 for 𝑖 > 0 and this implies that 𝑚𝑘𝑖 = 𝑛 𝑗′ for some 𝑗 ′ > 𝑗 , we can conclude
that 𝑠′ ⊆ 𝑁 𝑗 .

Combining the previous arguments we get that 𝑠′ ⊆ 𝑁 𝑗 \ 𝜙𝑈 (𝑛 𝑗 ) and we already
know that 𝑠 = {𝑛 𝑗 } ∪ 𝑠′ ∈ B, which implies that 𝑠′ ∈ B[𝑛 𝑗 ]. Therefore 𝑓 (𝑠) =

𝑓𝑛 𝑗
(𝑠′) ∈ 𝑈 by (∗) as desired. ■

The second class of spaces that we shall show are𝜔1-sequentially compact is the class
of compact bisequential spaces. Recall that U ⊆ P(𝑋) clusters at 𝑥 (often written as
𝑥 ∈ U) if 𝑥 ∈ 𝑈 for every𝑈 ∈ U. Of course ifU is an ultrafilter, thenU clusters at 𝑥
is equivalent toU converging to 𝑥.

Definition 4.3 [21] Let 𝑋 be a topological space and 𝑥 ∈ 𝑋 . We say that 𝑋 is bisequential
at 𝑥, if for every ultrafilterU that converges to 𝑥, there is a countable subfamily {𝐴𝑛 :
𝑛 ∈ 𝜔} ⊆ U such that for every𝑊 ∈ N (𝑥) there is 𝑛 ∈ 𝜔 such that 𝐴𝑛 ⊆ 𝑊 . We say
that 𝑋 is bisequential if it bisequential at 𝑥 for every 𝑥 ∈ 𝑋 .

We say that 𝑋 is (countably) bisequential if for every ultrafilter on a (countable) subset
of 𝑋 that clusters at 𝑥 ∈ 𝑋 , there is a countable subfamily of the ultrafilter converging
to 𝑥.

Given a tree 𝑇 ⊆ 𝜔<𝜔 and 𝑠 ∈ 𝑇 , recall that the set of successors of 𝑠 in 𝑇 is
𝑠𝑢𝑐𝑐𝑇 (𝑠) = {𝑛 ∈ 𝜔 : 𝑠⌢𝑛 ∈ 𝑇}. Given U ⊆ P(𝜔), we say that 𝑇 is U-branching
if 𝑠𝑢𝑐𝑐𝑇 (𝑠) ∈ U for every 𝑠 ∈ 𝑇 . As usual, we will omit the subindex in 𝑠𝑢𝑐𝑐𝑇 when
there is no risk of confusion. IfU is an ultrafilter and B is a barrier on 𝜔, we define an
ultrafilterUB ⊆ P(B) by declaring 𝑌 ∈ UB if and only if, there is anU-branching
tree 𝑆 ⊆ 𝑇 (B) such that 𝑌 = 𝑆 ∩ B (here we are identifying finite subsets with finite
increasing sequences on 𝜔).

Theorem 4.4 Every compact countably bisequential space is 𝜔1-sequentially compact.

Proof: Let 𝑋 be a compact countably bisequential space, let B be a barrier and let 𝑓 :
B → 𝑋 . Fix an ultrafilterU ⊆ P(𝜔) and define an ultrafilterV ⊆ P( 𝑓 [B]) ⊆ P(𝑋)
by𝑉 ∈ V if and only if 𝑓 −1 (𝑉) ∈ UB .

As 𝑋 is compact, we can find 𝑥 ∈ 𝑋 such that 𝑥 ∈ V and by bisequentiality, there
exists a decreasing family {𝑉𝑛 : 𝑛 ∈ 𝜔} ⊆ V such that for any open neighborhood
𝑊 ∈ N (𝑥), there is 𝑛 ∈ 𝜔 such that 𝑉𝑛 ⊆ 𝑊 . Define𝑈𝑛 = 𝑓 −1 (𝑉𝑛) for every 𝑛 ∈ 𝜔
and let 𝑇𝑛 = {𝑠 ∈ 𝑇 (B) : ∃𝑏 ∈ 𝑈𝑛 (𝑠 ⊆ 𝑏)}. Then each 𝑇𝑛 is anU-branching tree.

We now recursively define an infinite set 𝑀 = {𝑚𝑖 : 𝑖 ∈ 𝜔}. Let 𝑚0 =

min(𝑠𝑢𝑐𝑐𝑇0 (∅)). If we have already defined {𝑚𝑖 : 𝑖 < 𝑛}, define𝑚𝑛 such that for every
𝑠 ⊆ {𝑚𝑖 : 𝑖 < 𝑛} with 𝑠 ∈ 𝑇 (B) \ B, we have that 𝑠⌢𝑚𝑛 ∈ 𝑇𝑛. The choice of 𝑚𝑛
is possible since every relevant 𝑠 is an element of 𝑇0 and the trees 𝑇𝑛 areU-branching.
Moreover, if 𝑠 ⊆ 𝑀 , 𝑠 ∈ 𝑇 (B) \ B andmin(𝑠) ≥ 𝑚𝑛, then 𝑠 ∈ 𝑇𝑘 for every 𝑘 ≥ 𝑛.

It remains to show that 𝑓 ↾ (B|𝑀) converges to 𝑥. Fix an open set𝑊 ∈ N (𝑥)and
find 𝑛 ∈ 𝜔 such that 𝑉𝑛 ⊆ 𝑊 . Given 𝑠 ∈ B|(𝑀 \ 𝑚𝑛), let 𝑚𝑘 = max(𝑠) and 𝑠′ =
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𝑠 \ {𝑚𝑘}. By the choice of 𝑚𝑘 , we have that 𝑠 = 𝑠′⌢𝑚𝑘 ∈ 𝑇𝑛 ∩ B = 𝑈𝑛 as 𝑘 ≥ 𝑛, thus
𝑓 (𝑠) ∈ 𝑉𝑛 ⊆ 𝑊 . Therefore 𝑓 [B|(𝑀 \ 𝑚𝑛)] ⊆ 𝑊 . ■

The notion of 𝑛-sequential compactness in [19] was motivated by the 2-dimensional
version introduced in [3], where the main application was to show that compact metric
semigroups have idempotents naturally defined as the limit of a 2-dimensional sequence.
From Theorem 4.4 and the results in [3], we can conclude the following:

Corollary 4.5 Every compact countably bisequential semigroup 𝐾 has an idempotent natu-
rally representable as the Ramsey limit of a restriction of any given 𝑓 : [𝜔]2 → 𝐾 . ■

We can also now conclude that some well-known classes of spaces are 𝜔1-
sequentially compact. It is clear that if for a class of spaces G, hereditary under closed
subsets,we have that if every separable space inG is𝜔1-sequentially compact, then every
space in the class is 𝜔1-sequentially compact.

Roman Pol proved that separable Rosenthal compacta are bisequential [24] hence
Rosenthal compacta are countably bisequential. It can also be deduced from argu-
ments of G. Debs in [9] (see [26] and Lemma 6 in [25]). Therefore we have that every
Rosenthal compact space is 𝜔1-sequentially compact. Since every separable Eberlein
compact has weight at most 𝔠, and it is a result of S. Mercourakis that Eberlein compact
spaces of weight at most 𝔠 are Rosenthal compact, we also have that Eberlein com-
pacta are 𝜔1-sequentially compact. Similarly, as every separable Corson compactum is
metrizable, everyCorson compactum (and henceGul’ko andTalagrand compacta) is𝜔1-
sequentially compact. For definitions of these classes and the results just mentioned see
[23].

A space 𝑋 is angelic if relatively countably compact subsets of 𝑋 are relatively compact
and for every relatively compact subset 𝐴 ⊆ 𝑋 and every 𝑥 ∈ 𝐴 there is a sequence
{𝑥𝑛 : 𝑛 ∈ 𝜔} ⊆ 𝐴 that converges to 𝑥. It is a result of J. Bourgain, D. H. Fremlin and M.
Talagrand [5] that Rosenthal compacta are angelic spaces.

It was shown by Knaust in [15] that Rosenthal compacta have the Ramsey property.
We recall that a space 𝑋 has the Ramsey property if for every function 𝑓 : [𝜔]2 → 𝑋

such that lim𝑖→∞ lim 𝑗→∞ 𝑓 ({𝑖, 𝑗}) = 𝑥, there is 𝑀 ∈ [𝜔]𝜔 such that 𝑓 ↾ [𝑀]2 → 𝑥.
As any 2-sequentially compact space has the Ramsey property, the fact that Rosenthal
compact spaces are 𝜔1-sequentially compact is a strengthening of Knaust’s result.

The lists of angelic spaces with the Ramsey property was expanded in [16], how-
ever the question of whether every angelic space has the Ramsey property, was left
open. We show now that this is not the case by pointing out that the example of a
sequentially compact space that is not 2-sequentially compact considered in [7] is such
a counterexample.

Theorem 4.6 There is an angelic space without the Ramsey property.
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Proof: Note that a compact space is angelic if and only if it is Fréchet. In [7] an almost
disjoint family A ⊆ [𝜔 × 𝜔]𝜔 such that F (A) is Fréchet, sequentially compact but
fails to be 2-sequentially compact is constructed. Hence F (A) is an angelic space.

In order to prove that F (A) is not 2-sequentially compact, A was constructed so
that 𝐴𝑛 := {(𝑛, 𝑚) : 𝑚 ∈ 𝜔} ∈ A for every 𝑛 ∈ 𝜔 and so that 𝐺 : [𝜔]2 →
𝜔 × 𝜔, defined by 𝐺 ({𝑛, 𝑚}) = (𝑛, 𝑚) for 𝑛 < 𝑚, does not converge to any point
in F (A). To avoid confusion, let’s denote by ∗ the point at infinity on F (A). As
lim𝑚→∞ (𝑛, 𝑚) = 𝐴𝑛 and any infinite subset of A converges to ∗ in F (A), we get
that lim𝑛→∞ lim𝑚→∞ (𝑛, 𝑚) = ∗. Then moreover we have that F (A) does not have the
Ramsey property. ■

5 Some examples delineating the classes of 𝛼-sequentially
compact spaces.

Wewill construct the counterexamples that show that the classes of𝛼-sequentially com-
pact spaces and related spaces do not coincide (at least consistently, in some cases) giving
analogous results to those presented in [19] and [7].

We shall start this section by pointing out that neither of the Theorems 4.2 or 4.4
supersedes the other. Given 𝑋 ⊆ 2𝜔 , define A𝑋 = {{𝑥 ↾ 𝑛 : 𝑛 ∈ 𝜔} : 𝑥 ∈ 𝑋}
and denote by F (A), the one point compactifications of the Ψ-space over the almost
disjoint familyA. On the one hand, if 𝑋 ⊆ 2𝜔 has size 𝔠, thenF (A𝑋) is a compact bise-
quential space but its character is |A𝑋 | = 𝔠 ≥ 𝔟 (so this space satisfies the assumptions
of Theorem4.2 but does not satisfy the assumptions of Theorem4.4). On the other hand,
𝜔1 is a first countable, sequentially compact space that is not compact (so this space sat-
isfies the assumptions of Theorem 4.4 but does not satisfy the assumptions of Theorem
4.2). This raises the following question:

Question 5.1 Is there a compact and 𝜔1-sequentially compact space that is not count-
ably bisequential?

We can’t expect to conclude full bisequentiality because 𝜔1 + 1 is a compact and
𝜔1-sequentially compact space that is not bisequential. There is even an Eberlein
compactum (so Fréchet) with these properties (see [6]).

It is worth noting that for an almost disjoint family A, if its Franklin space F (A)
is 2-sequentially compact, then A is nowhere mad. Otherwise, if A ↾ 𝑋 is mad
with 𝑋 ∈ I(A)+, we can find a function 𝑓 : [𝜔]2 → 𝑋 that does not converge in
F (A) as mad families are never 2-sequentially compact (see [19]). Since an ad family
is Fréchet if and only if it is nowhere mad, all counterexamples constructed from ad
families, that are at least 2-sequentially compact in [19] and [7] are also Fréchet. It was
also shown in [7] that 2-sequentially compact spaces are 𝛼3. This gives more examples
of non-bisequential almost disjoint families that are Fréchet and 𝛼3. The existence of
these kind of ad families is not known in ZFC. For more consistent examples and for
the definition of 𝛼3 the reader may consult [8].
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It was previously shown in [19] that the classes of 𝑛-sequentially compact spaces and
(𝑛 + 1)-sequentially compact spaces does not coincide (assuming CH for 𝑛 > 1). This
result was later improved by the authors in [7], by showing that the same holds under
weaker assumptions, e.g., 𝔟 = 𝔠. We will show that we can also consistently differentiate
between 𝛼-sequentially compact and 𝛽-sequentially compact spaces for any 𝛼 ≠ 𝛽, by
stepping up the combinatorial analysis done in [7] to barriers.

We will say that 𝑇 ⊆ 𝜔<𝜔 is a Hechler tree, if for every 𝑠 ∈ 𝑇 , the set of successors of
𝑠 is coinitial on 𝜔, i.e., there exists 𝑘𝑠 ∈ 𝜔 such that 𝑠𝑢𝑐𝑐𝑇 (𝑠) = {𝑖 ∈ 𝜔 : 𝑠⌢𝑖 ∈ 𝑇} =

𝜔 \ 𝑘𝑠 . We can naturally associate a function ℎ𝑇 : 𝑇 → 𝜔 to each Hechler tree 𝑇 by
defining ℎ𝑇 (𝑠) = 𝑘𝑠 .

For 𝑠, 𝑡 ∈ 𝜔<𝜔 , we say that 𝑠 ≺ 𝑡 if either 𝑠 ⊏ 𝑡 or 𝑠 = 𝑟⌢𝑙 , 𝑡 = 𝑟⌢𝑚 for some
𝑟 ∈ 𝜔<𝜔 and 𝑙 < 𝑚. Here 𝑠 ⊏ 𝑡 means that 𝑠 is a proper initial segment of 𝑡. Enumerate
𝜔<𝜔 = {𝑠𝑖 : 𝑖 ∈ 𝜔} such that 𝑠𝑖 ≺ 𝑠 𝑗 implies 𝑖 < 𝑗 . We fix this enumeration for the
rest of the paper.

Definition 5.2 Let 𝑓 ∈ 𝜔𝜔 and let 𝑇 ⊆ 𝜔<𝜔 be a Hechler tree. We define:

• 𝑇 𝑓 ⊆ 𝜔<𝜔 where ∅ ∈ 𝑇 𝑓 and 𝑠𝑢𝑐𝑐(𝑠𝑖) = 𝜔 \ 𝑓 (𝑖) for every 𝑠𝑖 ∈ 𝑇 𝑓 .
• 𝑓𝑇 ∈ 𝜔𝜔 where 𝑓𝑇 (𝑛) = 𝑘 if and only if 𝑠𝑛 ∈ 𝑇 and 𝑠𝑢𝑐𝑐𝑇 (𝑠𝑛) = 𝜔 \ 𝑘 and
𝑓𝑇 (𝑛) = 0 otherwise.

Recall that FIN ⊆ P(𝜔) is the ideal of finite sets of 𝜔.

Definition 5.3 Given a barrier B, we define the ideal FINB by recursion on its rank,
as the set of all 𝑋 ⊆ [𝜔]<𝜔 such that

{𝑛 ∈ 𝜔 : {𝑠 \ {𝑛} : 𝑠 ∈ 𝑋 ∩ B(𝑛)} ∉ FINB[𝑛]} ∈ FIN

where FIN[𝜔 ]1 = {{𝑛} : 𝑛 ∈ 𝜔} works as the base case.

Notice that in the case of the barrier B = [𝜔]𝑛, the ideal FINB coincides with the
well known Fubini product FIN𝑛. In general, the Fubini product FIN𝛼 for a countable
limit ordinal 𝛼 is not uniquely determined and depends on the choice of an increasing
sequence {𝛼𝑛 : 𝑛 ∈ 𝜔} converging to 𝛼, the corresponding previous choices for each
𝛼𝑛 and so on. For a barrier B of rank 𝛼 such that 𝛼𝑛 = 𝜌(B[𝑛]) forms an increasing
sequence, the idealFINB also coincideswith a Fubini productFIN𝛼where the sequence
{𝛼𝑛 : 𝑛 ∈ 𝜔} is precisely the sequence converging to 𝛼 used in the Fubini product. For
more on these ideals and their presentations, the reader may consult [10].

It follows directly from the definition that we can characterize the ideals FINB via
Hechler trees.

Lemma 5.4 Let B be a barrier and 𝑋 ∈ FINB , then there exists a Hechler tree 𝐻 ⊆ 𝜔<𝜔

such that 𝑋 ∩ 𝐻 ∩ B = ∅.
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Proof: We prove it by induction on 𝜌(B). If B = [𝜔]1 and 𝑋 ∈ FINB = FIN, define
𝐻 ⊆ 𝜔<𝜔 such that ∅ ∈ 𝐻, 𝑠𝑢𝑐𝑐𝐻 (∅) = 𝜔 \ 𝑘 where 𝑋 ⊆ 𝑘 and 𝑠𝑢𝑐𝑐𝐻 (𝑠) = 𝜔 for
any 𝑠 ∈ 𝐻 \ {∅}. This 𝐻 clearly works.

Let now B be an arbitrary barrier with 𝜌(B) > 1. We may assume that {𝑘} ∉ B for
every 𝑘 ∈ 𝜔. Fix 𝑋 ∈ FINB . Thus {𝑛 ∈ 𝜔 : 𝑋 ∩ B(𝑛) ∉ FINB[𝑛]} is finite and we can
find 𝑘 ∈ 𝜔 that contains this set. Hence, for every 𝑛 ∈ 𝜔 \ 𝑘 , there is a Hechler tree 𝐻𝑛
with root {𝑛} such that 𝑋 ∩ 𝐻𝑛 ∩ B(𝑛) = ∅. Define 𝐻 = {∅} ∪ ⋃

𝑛≥𝑘 𝐻𝑛. It is clear
that 𝐻 is a Hechler tree and 𝑋 ∩ 𝐻 ∩ B = ∅. ■

Lemma 5.5 For every X ⊆ FINB with |X| < 𝔟, there is a Hechler tree 𝐻 ⊆ 𝜔<𝜔 such
that for every 𝑋 ∈ X, there exists 𝑛 ∈ 𝜔 such that

𝑋 ∩ 𝐻 ∩ B ⊆
⋃
𝑖≤𝑛

B(𝑖).

Proof: Let X ⊆ FINB with |X| < 𝔟. By Lemma 5.4, for every 𝑋 ∈ X there is a
Hechler tree 𝐻𝑋 such that 𝑋 ∩ 𝐻𝑋 ∩ B = ∅. Let 𝑓𝑋 = 𝑓𝐻𝑋

for every 𝑋 ∈ X. Since
|X| < 𝔟 we can find 𝑓 ∈ 𝜔𝜔 such that 𝑓 >∗ 𝑓𝑋 for every 𝑋 ∈ X. It follows from our
enumeration of𝜔<𝜔 that if 𝑓 >∗ 𝑓𝑋 , then there exists 𝑛𝑋 ∈ 𝜔 such that if 𝑓𝑋 (𝑠) > 𝑓 (𝑠)
for some 𝑠 ≠ ∅ then 𝑠 ∈ B(𝑖) for some 𝑖 ≤ 𝑛𝑋 . Thus letting 𝐻 = 𝐻 𝑓 we have that
𝐻 \ 𝐻𝑋 ⊆ ⋃

𝑖≤𝑛𝑋 B(𝑖) and this implies that

𝑋 ∩ 𝐻 ∩ B ⊆
⋃
𝑖≤𝑛𝑋

B(𝑖).

■

The following proposition appears in [19] for the particular case of barriers of the
form [𝜔]𝑛. The same argument shows that this is true for every barrier, so we have the
following:

Proposition 5.6 LetA be an almost disjoint family on a countable set 𝑁 and let B be a
barrier. If for every function 𝑓 : B → 𝑁 there is an infinite set 𝑋 ∈ [𝜔]𝜔 such that

|{𝐴 ∈ A : | 𝑓 [B|𝑋] ∩ 𝐴| = 𝜔}| < 𝔟

then F (A) is B-sequentially compact. ■

The following Lemma will also be helpful for proving that a space is not B-
sequentially compact for some barrier B. We say that a barrier C is non-trivial if C ≠

[𝜔]1.

Lemma 5.7 Let A be an almost disjoint family on a non-trivial barrier C, such that |𝐴 ∩
C(𝑛) | ≤ 1 for every 𝐴 ∈ A and every 𝑛 ∈ 𝜔. If for every 𝐸 ∈ [𝜔]𝜔 there exists 𝐴 ∈ A
such that 𝐴 ⊆ C|𝐸 , then F (A) is not C-sequentially compact.

Proof: As C is non-trivial, we may assume without loss of generality that every
element of the C has size at least 2, in particular, C(𝑚) is infinite for every 𝑚 ∈ 𝜔.
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Consider 𝑖 : C → C to be the identity map and 𝐸 ∈ [𝜔]𝜔 . We shall show that
𝑖 ↾ (C|𝐸) does not converges in F (A). Since 𝑖[C|𝐸] is infinite, it does not converge
to any isolated point in C.
On the other hand, if 𝐴 ∈ A and 𝑛 ∈ 𝜔, we have that |C(𝑚) ∩ 𝑖[C|𝐸 \ 𝑛] | = 𝜔 for
every 𝑚 ∈ 𝐸 \ 𝑛, but |𝐴 ∩ C(𝑚) | ≤ 1 implies that 𝑖[C|(𝐸 \ 𝑛)] ⊈ 𝐴 and hence it does
not converge to 𝐴. It remains to show that it does not converge to∞.
Fix the neighborhood𝑈 = F (A) \ ({𝐴} ∪ 𝐴) of∞ for some 𝐴 ⊆ C|𝐸 and let 𝑛 ∈ 𝜔.
As |𝐴 ∩ C(𝑖) | ≤ 1 for every 𝑖 ∈ 𝜔, we can find 𝑐 ∈ 𝐴 ⊆ C|𝐸 such that min(𝑐) > 𝑛.
Thus 𝑐 ∈ C|(𝐸 \ 𝑛) \𝑈 and in consequence 𝑖[C|(𝐸 \ 𝑛)] ⊈ 𝑈. Since this is true for any
𝑛 ∈ 𝜔, we get that 𝑖 ↾ (C|𝐸) does not converge to∞. ■

The previous lemmas allow us to show that there are spaces that are B-sequentially
compact but fail to be C-sequentially compact whenever their ideals associated satisfy a
suitable relation, for this reason it is useful to introduce the terminology of the Katětov
order.

Definition 5.8 [18] Let 𝑋 and 𝑌 be countable sets, I and J ideals on 𝑋 and 𝑌
respectively and 𝑓 : 𝑌 → 𝑋 .

(1) 𝑓 is a Katětov function from (𝑌,J) to (𝑋,I) if 𝑓 −1 (𝐴) ∈ J for all 𝐴 ∈ I.
(2) I ≤𝐾 J (I is Katětov below J ) if there exists a Katětov function from (𝑌,J) to

(𝑋,I).

An easy consequence of the definition is the following:

Lemma 5.9 Let I and J ideals on countable sets 𝑋 and 𝑌 respectively. Then the following
are equivalent:

(1) I ≰𝐾 J .
(2) For every 𝑓 : 𝑌 → 𝑋 there is 𝐵 ∈ J+ such that 𝑓 [𝐵] ∈ I.

Proof: To see that (1) implies (2) let 𝑓 : 𝑌 → 𝑋 . As I ≰𝐾 J , 𝑓 is not a Katětov
function, so there is 𝐴 ∈ I such that 𝐵 := 𝑓 −1 (𝐴) ∈ J+. Now 𝑓 [𝐵] ∈ I since
𝑓 [𝐵] ⊆ 𝐴 ∈ I. Conversely, to see thatI ≰𝐾 J let 𝑓 : 𝑌 → 𝑋 , wewant to prove that 𝑓
is not a Katětov function. So let 𝐵 ∈ J+ such that 𝐴 := 𝑓 [𝐵] ∈ I. Now 𝑓 −1 (𝐴) ∈ J+

since 𝐵 ⊆ 𝑓 −1 (𝐴). ■

Besides the ideal FINB , another ideal that will be useful in the constructions of
counterexamples is the following:

Definition 5.10 If B is a barrier on 𝜔, then G𝑐 (B) is the ideal on B such that
(G𝑐 (B))+ = ⟨{B|𝑋 : 𝑋 ∈ [𝜔]𝜔}⟩, i.e., 𝑆 ⊆ B is an element of G𝑐 (B) if and only
if there is no 𝑋 ∈ [𝜔]𝜔 such that B|𝑋 ⊆ 𝑆.

Note that (G𝑐 ( [𝜔]2))+ is the collection of all subsets of [𝜔]2 that contain an infinite
complete subgraph, that is the reason for the notation G𝑐 . Also note that the fact that
G𝑐 (B) is closed under finite unions follows from Nash-Williams Theorem.
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Theorem 5.11 (𝔟 = 𝔠) Let B and C be two barriers such that FINC ≰𝐾 G𝑐 (B). Then
there is an almost disjoint family A such that F (A) is B-sequentially compact but not C-
sequentially compact.

Proof: Enumerate CB = { 𝑓𝛼 : 𝛼 < 𝔠} and [𝜔]𝜔 = {𝐸𝛼 : 𝛼 < 𝔠}. For 𝐸 ∈ [𝜔]𝜔
let 𝐸↑ = 𝑇 (C|𝐸). Notice that for any such 𝐸 , the tree 𝐸↑ is everywhere𝜔-splitting and
hence it has infinite intersectionwith anyHechler tree𝐻 insideC, that is, |𝐸↑∩𝐻∩C| =
𝜔. Moreover, for any 𝑛 ∈ 𝐸 , we have that

|𝐸↑ ∩ 𝐻 ∩ C(𝑛) | = 𝜔.

Recursively construct {𝐴𝛼 : 𝛼 < 𝔠} ⊆ [C]𝜔 and {𝑋𝛼 : 𝛼 < 𝔠} ⊆ [𝜔]𝜔 such that
for all 𝛽 < 𝛼 < 𝔠:

(1) 𝑓𝛼 [B|𝑋𝛼] ∈ FINC ,
(2) |𝐴𝛼 ∩ 𝐴𝛽 | < 𝜔,
(3) |𝐴𝛼 ∩ 𝑓𝛽 [B|𝑋𝛽] | < 𝜔,
(4) |𝐴𝛼 ∩ C(𝑛) | ≤ 1 for all 𝑛 ∈ 𝜔,
(5) 𝐴𝛼 ⊆ 𝐸

↑
𝛼.

At step 𝛼 < 𝔠, let 𝑋𝛼 ∈ [𝜔]𝜔 such that 𝑓𝛼 [B|𝑋𝛼] ∈ FINC (this set exists by Lemma
5.9). Note that also, every 𝐴𝛽 with 𝛽 < 𝛼 is an element of FINC , then we can find a
Hechler tree 𝐻 as in Lemma 5.5 such that

𝑋 ∩ 𝐻 ∩ C ⊆
⋃
𝑖≤𝑛𝑋

C(𝑖)

for either 𝑋 = 𝑓𝛽 [B|𝑋𝛽] or 𝑋 = 𝐴𝛽 for some 𝛽 < 𝛼. Let 𝐴𝛼 ∈ [C]𝜔 be such that 𝐴𝛼 ⊆
𝐻∩C∩𝐸↑

𝛼 and |𝐴𝛼 ∩C(𝑖) | ≤ 1 for every 𝑖 ∈ 𝜔. It follows that 𝐴𝛼 ∩ 𝑋 ⊆ ⋃
𝑖≤𝑛𝑋 C(𝑖)

for some 𝑛𝑋 ∈ 𝜔 and as |𝐴𝛼 ∩C(𝑖) | ≤ 1 for every 𝑖 ≤ 𝑛𝑋 , this intersection is finite and
(2) and (3) hold. The remaining three properties follow from the construction.

Since {𝐴 ∈ A : | 𝑓𝛼 [B|𝑋𝛼] ∩ 𝐴| = 𝜔} ⊆ {𝐴𝛽 : 𝛽 ≤ 𝛼}, and this set has size less
that 𝔟, by Proposition 5.6 we get that F (A) is B-sequentially compact.

On the other hand, item (5) implies that F (A) is not C-sequentially compact by
Lemma 5.7 as C has rank greater than 1. ■

The natural question now, is when do the barriers B and C satisfy that FINC ≰𝐾
G𝑐 (B). We will see below that this only depends on the rank of the barriers, assuming
that at least the one with larger rank is uniform. See Theorem 5.12 and Corollary 5.14
below.

The relevance of the Katětov order in the study of subclasses of sequentially compact
spaces is also demonstrated in thework of R. Filipów,K. Kowitz andA.Kwela [13], where
the authors study many subclasses of sequentially compact spaces, prove some inclu-
sions among them and find counterexamples by using the Katětov order relationship
between some ideals naturally associated to these classes.

Recall that for B being a barrier, B[𝑠] is a barrier on𝜔 \ (max(𝑠) + 1). For the ease
of notation, we will do some abuse of notation: for a function 𝑔 : B(𝑠) → C(𝑡) we can
naturally associate a function 𝑔′ : B[𝑠] → C[𝑡] , we use 𝑔 for both functions. Also, for
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a Hechler tree 𝐻, we will denote by 𝐻 [𝑛] its copy above {𝑛}, that is, a tree 𝑇 with root
{𝑛} and such that 𝑠𝑢𝑐𝑐𝑇 (𝑠) = 𝑠𝑢𝑐𝑐𝐻 (𝑠 \ {𝑛}). In particular 𝜔<𝜔 [𝑛] = {𝑠 ∈ 𝜔<𝜔 :
𝑛 = min(𝑠)}.

Theorem 5.12 Let B, C be barriers with C uniform and 𝜌(B) < 𝜌(C). Then FINC ≰𝐾
G𝑐 (B).

Proof: By Lemma 5.9, it is enough to prove that for every 𝑓 : B → C there is 𝑋 ∈
[𝜔]𝜔 such that 𝑓 [B|𝑋] ∈ FINC . The proof is by induction on 𝜌(C). If 𝜌(C) = 1
there is nothing to do, so we can assume that 𝜌(C) > 1 and the result is true for C′

whenever 𝜌(C′) < 𝜌(C). We now prove it by induction on 𝜌(B). If 𝜌(B) = 1, we can
find an infinite set 𝑋 ∈ [𝜔]𝜔 such that either | 𝑓 [B|𝑋] ∩ C(𝑖) | ≤ 1 for every 𝑖 ∈ 𝜔 or
𝑓 [B|𝑋] ⊆ C(𝑛) for some 𝑛 ∈ 𝜔. Hence, assume that for any barriers B′ and C′ with
𝜌(B′) < 𝜌(B), 𝜌(C′) ≤ 𝜌(C) and 𝜌(B′) < 𝜌(C′) the result holds. We can also think
of {∅} as a barrier of rank 0. In this case the result is trivial but it is worth mentioning
since B[𝑠] is a barrier of rank 0 whenever 𝑠 ∈ B and we will also consider these kind
of barriers as part of our inductive hypothesis. We can also assume, by possibly passing
to a cofinite set, that 𝜌(C(𝑛)) ≥ 𝜌(B) for every 𝑛 ∈ 𝜔.

Define a function 𝜋𝑛 : B → 2 for every 𝑛 ∈ 𝜔 given by 𝜋𝑛 (𝑠) = 0 if and only if
𝑓 (𝑠) ∈ ⋃

𝑖≤𝑛 C(𝑖). By Nash-Williams, we can find an infinite set 𝑍𝑛 ∈ [𝜔]𝜔 such that
𝜋𝑛 ↾ (B|𝑍𝑛) is constant. If 𝜋𝑛 ↾ (B|𝑍𝑛) is constant with value 𝑖, we will say that 𝑍𝑛 is
a monochromatic set with color 𝑖. If for some 𝑛 ∈ 𝜔 we can find a monochromatic set
𝑍𝑛 with color 0, then 𝑓 mapsB|𝑍𝑛 into the union of the first 𝑛 + 1-cones of C, which is
an element of FIN(C). Hence we can assume that there is no monochromatic set with
color 0 for every 𝑛 ∈ 𝜔.

Let us recursively define {𝑋𝑛 : 𝑛 ∈ 𝜔}, {𝑚𝑖 : 𝑖 ∈ 𝜔}, {𝐻𝑛 : 𝑛 ∈ 𝜔} and {𝑔(𝑠, 𝑛) :
𝑠 ⊆ {𝑚𝑖 : 𝑖 < 𝑛} ∧ 𝑛 ∈ 𝜔} such that:

(1) 𝑚𝑖 = min(𝑋𝑖),
(2) 𝜋𝑛 ↾ (B|𝑋𝑛) is constant with value 1,
(3) 𝑋𝑛+1 ⊆ 𝑋𝑛 ⊂ 𝜔,
(4) 𝑔(𝑠, 𝑛) : B[𝑠] → C[𝑛] is given by 𝑔(𝑠, 𝑛) (𝑡) = 𝑓 (𝑡) \ {𝑛} if and only if 𝑓 (𝑡) ∈

C(𝑛) and otherwise let 𝑔(𝑠, 𝑛) (𝑡) ∈ C[𝑛] be arbitrary.
(5) 𝐻𝑛 ⊆ 𝜔<𝜔 [𝑛] is a Hechler tree.
(6) 𝑔(𝑠, 𝑛) [B[𝑠] |𝑋𝑛] ∩ 𝐻𝑛 = ∅ for every 𝑠 ⊆ {𝑚𝑖 : 𝑖 < 𝑛} with 𝑠 ≠ ∅.

Assume 𝑋𝑖 , 𝑚𝑖 , 𝐻𝑖 and 𝑔(𝑠, 𝑖) have been defined for 𝑖 ≤ 𝑛 and 𝑠 as above. Since
𝑔(𝑠, 𝑛 + 1) is defined from {𝑚𝑖 : 𝑖 ≤ 𝑛} and 𝑚𝑛+1 is defined from 𝑋𝑛+1, we only need
to define 𝑋𝑛+1 and 𝐻𝑛+1. Note that if in point (6) we have that 𝑠 ∉ 𝑇 (B), thenB(𝑠) = ∅
and then any choice of 𝑋𝑛 and 𝐻𝑛 work, so we will assume in the rest of the proof that
𝑠 ∈ 𝑇 (B).

We can find a 𝜋𝑛+1 monochromatic set (with color 1) 𝑋 ′ ⊆ 𝑋𝑛. Enumerate as {𝑠𝑖 :
𝑖 ≤ 𝑘} for some 𝑘 ∈ 𝜔, the set {𝑠 ⊆ {𝑚𝑖 : 𝑖 ≤ 𝑛} : 𝑠 ∈ 𝑇 (B) \ {∅}}. We can recursively
define 𝑋0

𝑛+1 ⊆ 𝑋 ′, 𝑋 𝑖+1
𝑛+1 ⊆ 𝑋 𝑖

𝑛+1 for 𝑖 < 𝑘 and 𝐻
𝑖
𝑛+1 ⊆ C[𝑛 + 1] for 𝑖 ≤ 𝑘 such that:

(∗) 𝑔(𝑠, 𝑛 + 1) [B[𝑠] |𝑋 𝑖
𝑛+1] ∩ 𝐻𝑖𝑛+1 = ∅.
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To see that the choices of 𝑋 𝑖
𝑛+1 and 𝐻

𝑖
𝑛+1 are possible, note that 𝑔(𝑠, 𝑛 + 1) : B[𝑠] →

C[𝑛 + 1] and 𝜌(B[𝑠]) < 𝜌(B) ≤ 𝜌(C[𝑛 + 1]). Then we can apply the inductive
hypothesis. Without loss of generality we can assume that min(𝑋 𝑖

𝑛+1) > 𝑚𝑛 for every
𝑖 ≤ 𝑘 . Also, since each 𝐻𝑖

𝑛+1 is a Hechler tree for every 𝑖 ≤ 𝑘 , we can define 𝐻𝑛+1 =⋂
𝑖≤𝑘 𝐻

𝑖
𝑛+1 which is a Hechler tree in C[𝑛 + 1]. Define 𝑋𝑛+1 = 𝑋 𝑘

𝑛+1. This finishes the
construction.

Let 𝑋 = {𝑥𝑖 : 𝑖 ∈ 𝜔} and𝐻 = {∅}∪⋃
𝑛∈𝜔 𝑛

⌢𝐻𝑛. We shall show that 𝑓 [B|𝑋] ∩𝐻 =

∅. Fix 𝑠 ∈ B|𝑋 , then 𝑠 = (𝑥𝑖0 , . . . , 𝑥𝑖𝑘 ) for some 𝑘 ∈ 𝜔 and some sequence 𝑖0 < · · · <
𝑖𝑘 . As {𝑥𝑖0 , . . . , 𝑥𝑖𝑘 } ⊆ 𝑋𝑖0 and 𝑋𝑖0 is 𝜋𝑖0 monochromatic with color 1, we have that
𝑓 (𝑠) ∈ 𝐶 (𝑛) for some 𝑛 > 𝑖0. Let 𝑠′ = {𝑥𝑖 ∈ 𝑠 : 𝑖 < 𝑛} and notice that 𝑠 \ 𝑠′ ⊆ 𝑋𝑛
and 𝑠′ ≠ ∅. Hence 𝑔(𝑠′, 𝑛) was considered at step 𝑛 in (6) and 𝑠′ was indexed as 𝑠𝑖 for
some 𝑖. Since we have that 𝐻 ∩𝜔<𝜔 [𝑛] ⊆ 𝐻𝑖𝑛, 𝑠 \ 𝑠′ ∈ B[𝑠′] |𝑋𝑛 and 𝑋𝑛 ⊆ 𝑋 𝑖𝑛, we can
conclude, by (∗), that 𝑔(𝑠′, 𝑛) (𝑠) = 𝑓 (𝑠) \ {𝑛} ∈ C[𝑛] \𝐻𝑛, so 𝑓 (𝑠) = 𝑛⌢𝑔(𝑠′, 𝑛) ∉ 𝐻.
Therefore 𝑓 [B|𝑋] ∩ 𝐻 = ∅, so 𝑓 [B|𝑋] ∈ FINC . ■

It is worth noting that the previous result gives us that for two barriers B and C,
the classes of B-sequentially compact spaces and C-sequentially compact spaces only
depends on the ranks of B and C whenever the largest is uniform. If 𝜌(B) < 𝜌(C)
and C is uniform, every C-sequentially compact space is B-sequentially compact by
Corollaries 3.5 and 3.6. On the other hand, there are (at least consistently) examples
of B-sequentially compact spaces that are not C-sequentially compact by Theorem
5.12. If otherwise 𝜌(B) = 𝜌(C) and both of them are uniform, then the classes of
B-sequentially compact and C-sequentially compact spaces coincide by Corollary 3.5.

A more subtle analysis can be done by considering 𝜌𝑢 (B) instead of 𝜌(B), but what
we have done suffices to show that (consistently) the classes of 𝛼-sequentially compact
and 𝛽-sequentially compact spaces do not coincide if 𝛼 ≠ 𝛽.

Corollary 5.13 (𝔟 = 𝔠) If {𝛼𝑛 : 𝑛 ∈ 𝜔} ⊆ 𝛼, there exists a space that is 𝛼𝑛-sequentially
compact for all 𝑛 ∈ 𝜔 but fails to be 𝛼-sequentially compact. In particular, for every 𝛼 < 𝛽 <
𝜔1, there exists an 𝛼-sequentially compact space that is not 𝛽-sequentially compact.

Proof: Fix a uniform barrier B𝑛 of rank 𝛼𝑛 for every 𝑛 ∈ 𝜔 and a barrier C of rank
𝛼. Repeat the proof of theorem 5.11 by enumerating⋃

𝑛∈𝜔
CB𝑛 = { 𝑓𝛼 : 𝛼 < 𝔠}.

The hypothesis of Theorem 5.11 for every barrier B𝑛 hold by Theorem 5.12. Finally by
Corollary 3.5 we get the result. ■

IfB andC are barriers with the same rank andB is uniform, then FINC ≤𝐾 G𝑐 (B).
To see this note that otherwise, by Theorem 5.11, there is an space 𝑋 that isB-seq com-
pact but not C-seq compact under 𝔟 = 𝔠, but this is a contradiction to Corollary 3.5,
since the Katětov order is absolute among Borel ideals due to Shoenfield’s absoluteness
Theorem (see [17]). We then get the following corollary:
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Corollary 5.14 Let B and C be uniform barriers such that 𝜌(B) ≤ 𝜌(C). Then the
following are equivalent:

(1) FINC ≰𝐾 G𝑐 (B).
(2) 𝜌(B) < 𝜌(C). ■

It is worth to point out that for (1) implies (2) we use that B is uniform while in (2)
implies (1) we use the uniformity of C.

6 Cardinal invariants associated to barriers

In this section, we define and analyze several cardinal invariants associated to barriers
that play an important role in the structure of 𝛼-sequentially compact spaces. In partic-
ular, we extend a result in [19] by showing that for every 𝛼 > 1, the Cantor cube 2𝜅 is
𝛼-sequentially compact if and only if 𝜅 < min{𝔟, 𝔰}. When 𝛼 = 1 it is known that 2𝜅 is
sequentially compact if and only if 𝜅 < 𝔰 (see [11]).

It is also shown in [7], that the cardinals 𝔭𝔞𝔯𝑛 are closely related to the constructions
of examples of spaces that are 𝑛-sequentially compact but fail to be (𝑛 + 1)-sequentially
compact under 𝔰 = 𝔟. This suggest that if we aim to do similar constructions for
arbitrary barriers, we should start analyzing and computing the analogous cardinal
invariants for 𝔭𝔞𝔯𝑛 in arbitrary barriers. If B is a barrier, 𝜋 : B → 2 and 𝐻 ∈ [𝜔]𝜔 ,
thenwe say that𝐻 ismonochromatic for 𝜋, if 𝜋 is constant onB|𝐻.We say that𝐻 is almost
monochromatic for 𝜋, if there is 𝐹 ∈ [𝐻]<𝜔 such that 𝐻 \ 𝐹 is monochromatic for 𝜋. If
Π is a family of colorings on B, then we say that 𝐻 is almost monochromatic for Π if it is
almost monochromatic for every 𝜋 ∈ Π. We refer to [𝜔]1 as the trivial barrier.

Definition 6.1 If B is a barrier, then 𝔭𝔞𝔯B is the minimum size of a collection of
colorings on B without an almost monochromatic infinite set.

If 𝑡 ∈ [𝜔]<𝜔 \ {∅}, recall that we write 𝑡 as {𝑡0, . . . , 𝑡𝑛−1} in the increasing way and
if 𝐼 ⊆ 𝑛, then 𝑡 ↾ 𝐼 = {𝑡𝑖 | 𝑖 ∈ 𝐼}. Also note that 𝑡 ↾ 2 ⊑ 𝑡 for 𝑛 ≥ 2. Given a barrier B
such that each of its elements has size at least 2, if we let B ↾ 2 := {𝑡 ↾ 2 : 𝑡 ∈ B} then
B ↾ 2 = [𝜔]2. For 𝑛 ∈ 𝜔, the cardinal 𝔭𝔞𝔯𝑛 mentioned above is exactly 𝔭𝔞𝔯 [𝜔 ]𝑛 , so we
will stick with the classical terminology 𝔭𝔞𝔯𝑛 when B = [𝜔]𝑛.

Theorem 6.2 If B is a non trivial barrier, then 𝔭𝔞𝔯B ≤ 𝔭𝔞𝔯2.

Proof: As B is a non trivial barrier, there is 𝑛 ∈ 𝜔 such that B|(𝜔 \ 𝑛) has all of its
elements of size at least two. Without loss of generality we may assume that 𝑛 = 0. Let
Π = {𝜋𝛼 | 𝛼 ∈ 𝔭𝔞𝔯2} be a family of colorings on [𝜔]2 with no almost monochromatic
infinite sets. Define �̂�𝛼 : B → 2 for every 𝛼 ∈ 𝔭𝔞𝔯2, given by �̂�𝛼 (𝑡) = 𝜋𝛼 (𝑡 ↾ 2). Note
that if 𝐻 is a an almost monochromatic infinite set for Π̂ = {�̂�𝛼 | 𝛼 ∈ 𝔭𝔞𝔯2}, then
𝐻 is also an almost monochromatic infinite set for Π. Hence Π̂ has no infinite almost
monochromatic sets. ■
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Recall that if B is a barrier, the rank of B[𝑛] is strictly smaller than the rank of B
for every 𝑛 ∈ 𝜔. This allows us to show that the same idea that proves that 𝔭𝔞𝔯𝑛 =

min{𝔟, 𝔰} for every 𝑛 ∈ 𝜔 in [2], also works for arbitrary barriers.

Theorem 6.3 If B is a barrier such that each of its elements has size at least 2, then 𝔭𝔞𝔯B ≥
𝔭𝔞𝔯2.

Proof: By induction on the rank ofB. Suppose thatB has rank 𝛾 and the result is true
for every barrier of rank strictly smaller than 𝛾. Let 𝜅 < 𝔭𝔞𝔯2 and let {𝜋𝛼 : 𝛼 ∈ 𝜅} be
a set of colorings onB. We are going to show that there exists a almost monochromatic
infinite set for this family.

For every 𝛼 ∈ 𝜅 and every 𝑛 ∈ 𝜔 let 𝜋𝑛𝛼 = B[𝑛] → 2 given by 𝜋𝑛𝛼 (𝑠) = 𝜋𝛼 ({𝑛}∪ 𝑠).
We recursively construct a collection {𝐻𝑛 : 𝑛 ∈ 𝜔} ⊆ [𝜔]𝜔 such that:

(1) 𝐻𝑛+1 ∈ [𝐻𝑛]𝜔 .
(2) 𝐻𝑛+1 is almost monochromatic for {𝜋𝑛𝛼 ↾ (B[𝑛] |𝐻𝑛) : 𝛼 ∈ 𝜅}

We start by defining𝐻0 = 𝜔\1 and as 𝐵[0] has rank smaller than 𝛾, by our inductive
hypothesis we know that there is𝐻1 ∈ [𝜔 \1]𝜔 such that𝐻1 is almost monochromatic
for {𝜋0𝛼 | 𝛼 ∈ 𝜅}. Now suppose that we have already defined 𝐻𝑛 and consider the
family {𝜋𝑛𝛼 ↾ (B[𝑛] |𝐻𝑛) : 𝛼 ∈ 𝜅}. As B[𝑛] |𝐻𝑛 has also rank smaller than 𝛾, there is
𝐻𝑛+1 ∈ [𝐻𝑛]𝜔 such that 𝐻𝑛+1 is almost monochromatic for this family.

Take 𝐻 an infinite pseudointersection of {𝐻𝑛 : 𝑛 ∈ 𝜔}. Note for every 𝑛 ∈ 𝐻 and
every 𝛼 ∈ 𝜅 we have that 𝐻𝑛 is almost monochromatic for 𝜋𝑛𝛼 with color 𝑗 (𝛼, 𝑛) ∈
{0, 1}. For every 𝛼 ∈ 𝜅, define an increasing 𝑓𝛼 ∈ 𝐻𝜔 such that 𝐻𝑛 \ 𝑓𝛼 (𝑛) is
monochromatic for 𝜋𝑛𝛼. Also let 𝑔 ∈ 𝜔𝜔 increasing such that 𝐻 \ 𝑔(𝑛) ⊆ 𝐻𝑛. As
F = { 𝑓𝛼 : 𝛼 ∈ 𝜅}∪ {𝑔} ⊆ 𝜔𝜔 has size less than 𝔭𝔞𝔯2 ≤ 𝔟, there exists 𝑓 ∈ 𝜔𝜔 strictly
increasing that dominates F .

For every 𝑖 ∈ 2, let 𝑋 𝑖𝛼 := {𝑛 ∈ 𝐻 : 𝑗 (𝛼, 𝑛) = 𝑖}. Note that {𝑋0
𝛼 | 𝛼 ∈ 𝜅} is a

collection of less than 𝔭𝔞𝔯2 ≤ 𝔰 subsets of 𝐻, so there is 𝑋 ∈ [𝐻]𝜔 such that, for every
𝛼 ∈ 𝜅 there is 𝑗 (𝛼) ∈ {0, 1} such that 𝑋 ⊆∗ 𝑋 𝑗 (𝛼)𝛼 .

Let us define 𝐽 := {𝑥𝑛 | 𝑛 ∈ 𝜔} ⊆ 𝑋 ⊆ 𝐻 such that 𝑥𝑛+1 > 𝑓 (𝑥𝑛) for every 𝑛 ∈ 𝜔.
Claim: 𝐽 is almost monochromatic for {𝜋𝛼 | 𝛼 ∈ 𝜅}.
Proof of the claim: Let 𝛼 ∈ 𝜅. We know that 𝑋 ⊆∗ 𝑋 𝑗 (𝛼)𝛼 , 𝑓𝛼 <∗ 𝑓 and 𝑔 <∗ 𝑓 , so

there exists 𝑘 ∈ 𝜔 such that:

(1) 𝑋 \ 𝑘 ⊆ 𝑋
𝑗 (𝛼)
𝛼 ,

(2) 𝑓𝛼 (𝑛) < 𝑓 (𝑛) for every 𝑛 > 𝑘 and
(3) 𝑔(𝑛) < 𝑓 (𝑛) for every 𝑛 > 𝑘 .

Fix 𝑠 ∈ B|(𝐽 \ (𝑘 +1)) and let 𝑛 = min(𝑠) and 𝑡 = 𝑠\ {𝑛}. Thenwe have that 𝑛 ∈ 𝑋 𝑗 (𝛼)𝛼

and
𝑡 ⊆ 𝐽 \ 𝑓 (𝑛) ⊆ 𝑋 \ 𝑓 (𝑛) ⊆ 𝐻 \ 𝑓 (𝑛) ⊆ 𝐻 \ 𝑔(𝑛) ⊆ 𝐻𝑛.

Notice thatmin(𝑡) > 𝑓 (𝑛) > 𝑓𝛼 (𝑛), hence 𝑡 ⊆ 𝐻𝑛 \ 𝑓𝛼 (𝑛). But then 𝜋𝛼 (𝑠) = 𝜋𝑛𝛼 (𝑡) =
𝑗 (𝛼, 𝑛) and 𝑗 (𝛼, 𝑛) = 𝑗 (𝛼) since 𝑛 ∈ 𝑋 𝑗 (𝛼)𝛼 . This proofs that 𝜋𝛼 is constant on B|(𝐽 \
(𝑘 + 1)) with color 𝑗 (𝛼). 𝐶𝑙𝑎𝑖𝑚□

The proof of the previous Claim finishes the proof of the Theorem. ■
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Corollary 6.4 𝔭𝔞𝔯B = 𝔭𝔞𝔯2 for every non trivial barrier B on 𝜔 and 𝔭𝔞𝔯 [𝜔 ]1 = 𝔰. ■

Corollary 6.5 If 𝜅 < 𝔭𝔞𝔯2 andB is a barrier, then 2𝜅 isB-sequentially compact. Moreover

𝔭𝔞𝔯2 = min{𝜅 : 2𝜅 is not B-sequentially compact}

for every non trivial barrier B.

Proof: If 𝜅 < 𝔭𝔞𝔯2 = min{𝔰, 𝔟}, then 𝜅 < 𝔰 and so 2𝜅 is sequentially compact. Simi-
larly, it has character less than 𝔟 since 𝜅 < 𝔟. Therefore 2𝜅 is𝜔1-sequentially compact by
Theorem4.2. Conversely 2𝔭𝔞𝔯2 is not even 2-sequentially compact by a result in [19]. ■

The dual cardinal to 𝔭𝔞𝔯 is the cardinal 𝔥𝔬𝔪. The characterization of 𝔭𝔞𝔯 in terms
of 𝔟 and 𝔰 has also a dual version using 𝔡 and a variant of 𝔯, the dual cardinals of 𝔟 and
𝔰 respectively (see [2]).

Notation 6.6 Let 𝑁 be a countable set, I an ideal on 𝑁 and 𝑋,𝑌 ⊆ 𝑁 . Then 𝑋 ⊆I 𝑌

means that 𝑋 \ 𝑌 ∈ I.

Definition 6.7 Given a barrier B let,

𝔥𝔬𝔪B = min{|H | : H ⊆ [𝜔]𝜔 ∧ ∀𝑆 ⊆ B ∃𝑀 ∈ H ∃𝑖 ∈ 2 (B|𝑀 ⊆ 𝑆𝑖)}

and

𝔯B = min{|R| : R ⊆ [𝜔]𝜔 ∀𝑆 ⊆ B ∃𝑅 ∈ R ∃𝑖 ∈ 2 (B|𝑅 ⊆FINB 𝑆𝑖)}.

A family as in the definition of 𝔥𝔬𝔪B is called an homogeneous family for B or a B-
homogeneous family. Analogously a family as in the definition of 𝔯B is called a reaping
family for B or a B-reaping family.

Recall that by the Nash-Williams theorem, for every 𝜋 : B → 2 there is 𝑀 ∈ [𝜔]𝜔
such that 𝜋 ↾ (B|𝑀) is constant. In this way 𝔥𝔬𝔪B is well defined and 𝔯B ≤ 𝔥𝔬𝔪B
since every B-homogeneous family is a B-reaping family. In particular 𝔯B is well
defined.

Note that ifB is the trivial barrier, i.e.,B = [𝜔]1, then 𝔯B = 𝔥𝔬𝔪B = 𝔯. On the other
hand, if B is a non trivial barrier, then 𝔥𝔬𝔪2 ≤ 𝔥𝔬𝔪B . To see this we can suppose that
every element of B has size at least 2 and thus every coloring 𝜋 : [𝜔]2 → 2 induces a
coloring of �̂� : B → 2 given by �̂�(𝑠) = 𝜋(𝑠 ↾ 2). Now an infinite homogeneous set for
�̂� is also homogeneous for 𝜋, which in turns gives that any homogeneous family forB is
an homogeneous family for [𝜔]2 and thenmax{𝔡, 𝔯𝜎} = 𝔥𝔬𝔪2 ≤ 𝔥𝔬𝔪B . In particular
𝔡 ≤ 𝔥𝔬𝔪B . Ramsey ultrafilters will be helpful in our study of the cardinal 𝔥𝔬𝔪B .

Recall that a non-principal ultrafilterU on𝜔 is Ramsey if for all 𝜋 : [𝜔]2 → 2, there
is 𝑈 ∈ U such that 𝜋 ↾ [𝑈]2 is constant. A family F ⊆ [𝜔]𝜔 is selective if for every
decreasing sequence {𝑌𝑛 | 𝑛 ∈ 𝜔} ⊆ F , there is 𝑓 : 𝜔 → 𝜔 such that 𝑓 [𝜔] ∈ F ,
𝑓 (0) ∈ 𝑌0 and 𝑓 (𝑛 + 1) ∈ 𝑌 𝑓 (𝑛) for all 𝑛 ∈ 𝜔. The following result, which according to
D. Booth is mostly due to K. Kunen, relates Ramsey ultrafilters and selective families.
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Theorem 6.8 [4] If U is a non principal ultrafilter, then U is Ramsey if and only if it is
selective. ■

We will show now that a base for a Ramsey ultrafilter is an homogeneous family
for every barrier B. Hence if we define 𝔲𝑅 as the minimum character of a Ramsey
ultrafilter1 we get that 𝔥𝔬𝔪B ≤ 𝔲𝑅 .

The next theorem is a standard result of Local Ramsey theory (see [26] Chapter
7). It follows immediately from Theorem 7.42 in [26] in the same way Nash-Williams’
theorem follows from Ellentuck theorem. For the convenience of reader, we sketch the
argument.

Theorem 6.9 IfU is a Ramsey ultrafilter, B is a barrier on𝜔 and 𝜋 : B → 2, then there is
𝑈 ∈ U such that 𝜋 ↾ (B|𝑈) is constant.

Proof: By induction on the rank of the barrier. If B has rank zero, i.e, B = {∅} then
the result is trivial.

Suppose thatB has rank 𝛾 and the result is true for every barrier of rank smaller than
𝛾. As 𝐵[𝑛] is a barrier on 𝜔 \ (𝑛 + 1) of rank less than 𝛾, there is𝑉𝑛 ∈ U such that the
coloring 𝜋𝑛 : 𝐵[𝑛] → 2 is constant on B[𝑛] |𝑉𝑛, where 𝜋𝑛 (𝑠) = 𝜋({𝑛} ∪ 𝑠).

For every 𝑛 ∈ 𝜔 we know that 𝜋𝑛 ↾ (B[𝑛] |𝑉𝑛) is constant on color 𝑗 (𝑛) ∈ 2. So
take𝑉 ∈ U and 𝑖 ∈ 2 such that 𝑗 (𝑛) = 𝑖 for all 𝑛 ∈ 𝑉 .

Now call 𝑈𝑛 = (⋂𝑚≤𝑛 𝑉𝑛) ∩ 𝑉 ∩ (𝜔 \ 𝑛 + 1) and note that {𝑈𝑛 | 𝑛 ∈ 𝜔} is a
decreasing sequence of elements ofU , so applying thatU is selective, there is 𝑓 ∈ 𝜔𝜔
such that 𝑓 [𝜔] ∈ U, 𝑓 (0) ∈ 𝑈0 and 𝑓 (𝑛+1) ∈ 𝑈 𝑓 (𝑛) for all 𝑛 ∈ 𝜔. Define𝑈 := 𝑓 [𝜔].

It remains to show that 𝜋 ↾ (B|𝑈) is constant with value 𝑖. Indeed let 𝑠 =

{𝑎0, . . . , 𝑎𝑘} ∈ B|𝑈. Then 𝑎0 ∈ 𝑉 and

{𝑎1, . . . , 𝑎𝑘} ⊆ 𝑈 𝑓 (𝑎0 ) ⊆ 𝑈𝑎0 ⊆ 𝑉𝑎0 ,

so that {𝑎1, . . . , 𝑎𝑘} ∈ B[𝑎0] |𝑉𝑎0 ,. Then 𝜋(𝑠) = 𝜋𝑎0 ({𝑎1, . . . , 𝑎𝑘}) = 𝑗 (𝑎0) = 𝑖. ■

Notation 6.10 If 𝑅 ∈ [𝜔]𝜔 then H(𝑅) is the collection of all non-empty trees 𝑇 ⊆ 𝑅<𝜔

such that 𝑠𝑢𝑐𝑐𝑇 (𝑠) is cofinite in 𝑅 for all 𝑠 ∈ 𝑇 .

We will need the following folklore facts.

Proposition 6.11 If 𝑅 ∈ [𝜔]𝜔 and 𝑇 ∈ H(𝑅), then there is 𝐴 ∈ [𝑅]𝜔 such that
[𝐴]𝜔 ⊆ [𝑇]. ■

Proposition 6.12 cof(FINB) = 𝔡 for every non trivial barrier B. ■

An explicit proof for the previous result about cof(FINB) where B is a barrier of
finite rank appears in [7]. The same argument works for general barriers.

Theorem 6.13 𝔥𝔬𝔪B = max{𝔡, 𝔯B} for every non trivial barrier B on 𝜔.

1Let 𝔲𝑅 = 𝔠 in case that there is no such ultrafilter.

2024/05/11 17:43



28 Corral et al.

Proof: We already noted thatmax{𝔡, 𝔯B} ≤ 𝔥𝔬𝔪B , so it is enough to prove the other
inequality. For this let R = {𝑅𝛽 | 𝛽 ∈ 𝔯B} be a reaping family for B and for every 𝛽 ∈
𝔯B let {𝑋𝛽𝛼 | 𝛼 ∈ 𝔡} cofinal inFINB|𝑅𝛽 . Nowby definition ofFINB|𝑅𝛽 andProposition
6.11, for every 𝛽 ∈ 𝔯B and every 𝛼 ∈ 𝔡 there are 𝑇𝛽𝛼 ∈ H(𝑅𝛽) and 𝐴𝛽𝛼 ∈ [𝑅𝛽]𝜔 such
that:

(1) 𝑇𝛽𝛼 ∩ 𝑋𝛽𝛼 = ∅,
(2) [𝐴𝛽𝛼]𝜔 ⊆ [𝑇𝛽𝛼 ].

Now letH = {𝐴𝛽𝛼 | 𝛽 ∈ 𝔯𝛽 ∧ 𝛼 ∈ 𝔡}. We claim thatH is a homogeneous family for
B. To see this let 𝑆 ⊆ B. AsR is a reaping family forB there is 𝛽 ∈ 𝔯𝛽 and 𝑖 ∈ 2 such that
B|𝑅𝛽 ⊆FINB 𝑆𝑖 . Now call 𝑋 := (B|𝑅𝛽) \ 𝑆𝑖 ∈ FINB . Moreover, as 𝑋 ⊆ B|𝑅𝛽 , then
𝑋 ∈ FINB|𝑅𝛽 . Thus there is 𝛼 ∈ 𝔡 such that 𝑋 ⊆ 𝑋

𝛽
𝛼 and consequently 𝑋 ∩ 𝑇𝛽𝛼 = ∅.

Also we know that [𝐴𝛽𝛼]𝜔 ⊆ [𝑇𝛽𝛼 ] , so 𝑋 ∩ (B|𝐴𝛽𝛼) = ∅. Indeed, if 𝑏 ∈ 𝑋 ∩ (B|𝐴𝛽𝛼),
then there is 𝑍 ∈ [𝐴𝛽𝛼]𝜔 such that 𝑏 ⊑ 𝑍 and, as 𝑍 ∈ [𝑇𝛽𝛼 ] , then 𝑏 ∈ 𝑇𝛽𝛼 ∩ 𝑋 , which is
a contradiction. This way we have that B|𝐴𝛽𝛼 ⊆ B|𝑅𝛽 ⊆ 𝑆𝑖 ∪ 𝑋 and (B|𝐴𝛽𝛼) ∩ 𝑋 = ∅,
so B|𝐴𝛽𝛼 ⊆ 𝑆𝑖 and we are done. ■

Question 6.14 Is 𝔥𝔬𝔪B = 𝔥𝔬𝔪2 for every non trivial barrier B?
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